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saving dimensions. We identify positive spillovers of the tested management practices on job 
satisfaction and carbon dioxide emissions, and captains overwhelmingly express desire for deeper 
managerial engagement. Both the implementation and the results of the study reveal an uncharted 
opportunity for management researchers to delve into the black box of firms and rigorously 
examine the determinants of productivity amongst skilled labor.
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1. Introduction
One of the longstanding puzzles in economics relates to the striking observed differences in
firm-level productivity across space and time. For example, total factor productivity ratios
of 3:1 or more are not unusual across 90th percentile to 10th percentile producers within
major manufacturing industries (Foster et al., 2008). Understanding the sources of such
differences remains key to deepening our knowledge of the causes of economic growth and
the nature of prosperity. Syverson (2011) provides a discussion of the determinants of and
underlying differences in observed productivity at the micro-level, but what remains rare
are causal tests of an ingredient that behavioral and management economists deem as first
order: the role of management practices.

Recently, a rich literature has developed that provides key evidence of a robust relation-
ship between management and firm-level performance. Specifically, it points to the import
of operations management, performance monitoring, target setting, and people management
for improving productivity (Bloom and Van Reenen, 2007, 2011; Bloom et al., 2013, 2015;
Tsai et al., 2015; McKenzie and Woodruff, 2017; Bruhn et al., 2018). In general, evidence is
scant concerning the causal relationship between management practices and the productiv-
ity of skilled labor, particularly in the developed world. On the one hand, the correlations
produced in the literature might suggest that skilled workers select into organizations that
manage effectively, or that particular management strategies may causally improve workers’
productivity. On the other, (excessive) management could backfire due to perceptions of
control—and therefore reduced choice autonomy—and distrust on the part of the principal
that such management may elicit in the agent (Akerlof and Kranton, 2005; Falk and Kosfeld,
2006; Ellingsen and Johannesson, 2008). While several studies have attempted to delve into
the “black box” of firm-level operations to observe the effects of human resource management
on productivity (Ichniowski et al., 1997; Lazear, 2000; Shaw, 2009; Bloom et al., 2013, 2016),
a lack of robust causal evidence renders the effectiveness of distinct management practices
well-grounded in principal-agent models unsettled.

We aim to narrow this gap in understanding by reporting results from a large-scale
field experiment conducted in partnership with a major international airline. Our primary
goal is to identify rigorously the impact of pertinent management practices—with increasing
degrees of intensity—on measured productivity of skilled labor, particularly in the developed
world where such research is especially lacking. Our secondary goal is to pressure test
theoretically and empirically supported indications of the importance of prosocial motivation
in determining productivity in a real-world labor setting. We focus on commercial airline
captains’ productivity, where productivity is defined as a function of fuel use, time delays,
and safety. Several features render the commercial aviation context—and airline captains in
particular—ideal for investigating the impact of management practices on productivity.1

First, like much skilled labor, captains in the commercial aviation industry possess strong
1Two observational approaches have assessed the historical impact of management on productivity. Giorcelli (2016)

uses a quasi-experiment on management training and technology adoption in Italy under the post-war Marshall Plan
and finds positive impacts on productivity. Bender et al. (2018) match the Bloom and Van Reenen (2007) survey data
with German employee administrative data (from 1975 onwards) and find that about half of the TFP-management
relationship is related to managerial ability.
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professional identities and a sense of social obligation and organizational mission. The extent
to which various management practices affect the productivity of such identity- and mission-
driven personnel is largely unknown. Second, and relatedly, captains embody significant
human capital, operate in a high-stakes environment, and receive a considerable professional
wage as a result.2 One might posit that management practices should have little to no effect
on such high-wage and -ability types, in which case direct application of findings from the
emerging literature on the productivity impacts of management would be a futile exercise.
Finally, captains’ decisions play an integral part in determining their firm’s bottom line,
so discerning which management practices motivate these flagship employees has significant
implications for the short-term profitability and long-run financial success of the firm.

Various combinations of these attributes characterize a number of professional occupa-
tions, such as architects, civil servants, consultants, engineers, lawyers, medical doctors,
military personnel, researchers, and tech workers. While some prominent management prac-
tices may be implemented in such professional settings, little evidence exists to support their
effectiveness to increase productivity. For instance, with respect to employee performance
monitoring, the few relevant field studies that exist typically focus on low-wage workers with
little or no professional identity, and thus monitoring can be posited to strengthen motiva-
tion by simply increasing the potential cost of poor performance (see Nagin et al., 2002). In
high-skilled labor contexts, however, it is plausible that monitoring is irrelevant to motivation
since workers are typically well-trained and intrinsically motivated. In fact, monitoring may
even demotivate these types if they perceive it to question or undermine their occupational
proficiency or status (Falk and Kosfeld, 2006). Commercial airline captains train meticu-
lously to earn their seat in the cockpit and are profoundly motivated to excel in their work.
Such professionalism combined with captains’ considerable accountability for discretionary
input costs within airlines renders them prime candidates for discernment of the effects of
monitoring, and other management practices, in consequential professional settings.

We make use of a rare opportunity to isolate the responses of high-skilled labor to
specific management strategies to which they have no prior exposure. Since airline cap-
tains’ unions are traditionally reluctant to instill managerial changes—including incentive
provision—airlines have faced a fundamental incapacity to alter wage structures and man-
agement practices to boost captains’ productivity in line with principal-agent models (Holm-
ström, 1979). By focusing on behaviors embedded within the airline’s standard operating
procedures and holding captains’ private financial incentives constant, we elicited union-level
authorization to conduct the study, thereby providing a unique opportunity to “look under
the hood” of an organization that critically relies on the performance of skilled employees.

We observe more than 110,000 binary behavioral outcomes across 40,000 unique flights
over a 27-month period for the entire population of captains within Virgin Atlantic Airways
(“VAA”; N=335) who were eligible to fly during the full time period under investigation
(January 2013 to March 2015). Captains were randomly allocated to one of four study
groups subject to: (i) performance monitoring (i.e., our control group), (ii) informational

2The average salary of a captain in our study is roughly $175,000-$225,000 (based on information updated in June
2015: http://www.pilotjobsnetwork.com/jobs/Virgin_Atlantic).
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performance feedback, (iii) target setting, and (iv) prosocial incentives.3 In this form, the
experiment provides an opportunity to measure the incremental effects of each distinct mech-
anism on measured aspects of productivity while holding personnel fixed. Such a design is
in contrast to the previous field experimental literature that has focused on the Bloom and
Van Reenen (2007) management practices in a bundled manner (Bloom et al., 2013; Fryer Jr.,
2017; Bruhn et al., 2018) and thus has difficulties identifying the marginal impact of each
practice on productivity.

While prosocial incentives and motivations are not explicitly considered within the tradi-
tional management toolkit (e.g., Bloom and Van Reenen, 2007), they have recently received
considerable attention in the literature both theoretically (Ellingsen and Johannesson, 2008;
Bénabou and Tirole, 2010) and empirically (Tonin and Vlassopoulos, 2010; Anik et al., 2013;
Imas, 2014; Charness et al., 2016; Hedblom et al., 2016). Moreover, according to a recent
survey, 67% of CEOs believe prosocial considerations are increasingly essential for acquiring
and motivating high-skilled labor (PricewaterhouseCoopers, 2016). We randomize prosocial
incentives in our field experiment to investigate whether their inclusion into the management
practice survey enhances its applicability to skilled and/or mission-driven labor contexts.

Our field experiment importantly leverages recent developments in aircraft data pro-
cessing that capture precise flight-level measures of fuel-related productivity across three
distinct phases—pre-flight, in-flight, and post-flight—which we package in a binary “hit or
miss” fashion. The pre-flight measure, denoted Fuel Load, assesses the accuracy with which
captains implement final adjustments to aircraft fuel load prior to takeoff given all relevant
factors (e.g., weather and aircraft weight). The in-flight measure, denoted Efficient Flight,
captures the fuel efficiency of captains’ decisions between takeoff and landing. The post-flight
measure, denoted Efficient Taxi, indicates whether the captain turns off at least one en-
gine during taxi-in. Since captains maintain ultimate authority over these decisions, airlines
generally encourage but do not mandate these or similar measures to optimize firm efficiency.

We report three primary results. First, within-subject analysis of behavior before versus
during the experiment—akin to the design of Bandiera et al. (2007, 2009)—strongly suggests
that simple performance monitoring can significantly induce readily attainable improvements
in labor productivity.4 Within-subject analysis indicates that the proportion of flights in the
control group—who were aware that we began monitoring behaviors during the study—on
which captains successfully performed the Efficient Flight metric increased by nearly 50
percent compared to the pre-experimental period. Moreover, these captains successfully
increased implementation of Fuel Load and Efficient Taxi by around 10 percent. In short, a

3These practices could be construed as falling within the performance monitoring, target setting, and people
management concepts of workplace management by Bloom and Van Reenen (2007, 2011) and Bloom et al. (2017).
While a vast economic literature demonstrates theoretical and empirical robustness of financial incentive provision
(e.g., see Lazear, 2000), strong unionization of airline captains precluded incorporation of direct financial incentives
in our experimental design.

4In an ideal setting, we would compare a genuine business-as-usual ‘control’ group that remained unaware of the
experiment to our aware ‘control’ group. Such a design was precluded by the VAA- and union-dictated stipulation
that we be fully transparent with all captains about the project’s undertaking. Even so, had such a design been
possible, the high likelihood of contamination to unaware captains in this idealized control group would have only
allowed for estimation of a lower bound monitoring effect that diminished with time (i.e., as information spread
through the captain population). As a result, and given the granular (pre-)experimental data Virgin had captured
at the captain level, the before-and-after approach may nonetheless be preferred in this context.
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simple lesson arises: what is measured is improved, even among skilled professionals.
Second, despite the sizable monitoring effects, we find a significant role for the additional

management practices contained in our experimental treatments. While all three practices
led to statistically significant increases in at least one of the measured behaviors, we observe
significant differences between the performance of captains who received personalized per-
formance targets (with or without incentives) versus those who did not. The experimental
findings indicate that captains who received performance targets implemented the measured
behaviors by up to 28 percent above the monitoring group’s implementation.5 Including a
conditional prosocial incentive in the form of a donation to charity did not further improve
productivity beyond the effects of providing a personal target.6 Overall, these interventions
were quite cost effective: they resulted in a reduction in fuel use of more than 7,700 tons
(i.e., $6.1 million in 2014 prices) over the eight-month experimental period.7

Third, performance monitoring leads to productivity gains for the firm beyond the exper-
imental window. The six-month post-experiment baseline (i.e., performance in the control
group) remains considerably improved from the pre-experiment baseline, indicating either
that captains believe that they are still being monitored or that monitoring for a fixed pe-
riod of time induces captains to make low-effort efficiency improvements that are quickly
habituated. Conversely, treated captains’ productivity reverts to post-experiment baseline
levels for Fuel Load and Efficient Flight, while the treatment effects remain but attenuate
for Efficient Taxi. Such attenuation suggests that the productivity improvement induced by
the experimental treatments depend on recurrent administration.

While the management strategies led to reductions in fuel costs for the firm, it is possible
that their implementation induces spillovers on other important internal metrics—such as
delays, safety, and captains’ job satisfaction—as well as external costs, such as carbon dioxide
emissions. With regards to on-time performance, we find that our experimental groups did
not increase delays. With respect to safety, all behaviors targeted within the study are well
within VAA’s stringent safety standards.8 All communications with the captains were vetted
by senior decision-makers (i.e., unions, select senior captains, and VAA management). Each
highlighted safety as the airline’s utmost priority and emphasized the targeted behaviors’
situation well within the airline’s standard operating procedures. Moreover, all targets were
capped at 90% of a captain’s flights to alleviate pressure and allow flexibility in decision-

5These findings are consistent with two studies in the developed world that show that management practices may
causally impact on productivity (Fryer Jr., 2017; Bloom et al., 2018).

6To provide a comparison to existing organizational practices, simulator trainings do not have any identifiable
impacts on the targeted behaviors in our study. Ensuring that employees are up-to-date in their training is an
important management practice across numerous sectors, and we are fortunate to observe the incidence of randomly
timed sessions in which the captains in our sample completed simulator trainings. We find that attending a simulator
session has no impact on productivity as measured by the three metrics highlighted in the study. These training
sessions however provide other benefits not observed in our data.

7Additionally, we find that the environmental benefits associated with the fuel savings from this study are in the
range of $0.5 to $2 million (depending on the social cost of carbon considered) – equivalent to 8 to 33% of the total
fuel savings. In this manner, our approach provides a new way to combat firm-level externalities: target workers
rather than the firm as a whole.

8These standards comply with those set by the UN International Civil Aviation Organization, the European
Aviation Safety Agency, and the U.K. Civil Aviation Authority. Moreover, as in our case, many airlines maintain
stricter safety standards than those imposed upon them by these external bodies.
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making on any given flight. No fuel-related safety incidents were reported during the study.9
Finally, survey results indicate that management practices can improve employees’ well-

being, and captains express demand for further engagement. The experimental treatments
appear to have positively affected captains’ reported job satisfaction relative to the control
group with the largest gains coming from the prosocial group captains, whose average job
satisfaction exceeded that of the control group by 6.5%. Additionally, of the 60% of captains
who responded to the survey, 79% indicated a desire for the continuation of the management
strategies embodied in the experimental treatments, while only 6% expressed a preference
for the pre-study status quo.

Empirical results from our field experiment hold implications for the design of manage-
ment practices within firms comprised of skilled workers in advanced economies, suggesting
a compelling role for: (i) managerial oversight in the form of performance monitoring of
defined productivity outcomes; and (ii) comparison of employees’ own productivity against
personalized targets set by management personnel. Performance feedback on its own pro-
vides little enhancement to employees’ productivity beyond the effect of monitoring on its
own, and prosocial incentives do not boost productivity beyond the effect of personalized tar-
gets in this context. As emerging and developed economies continue to advance, economists
should pursue a more thorough and nuanced understanding of the generalizability and effec-
tiveness of distinct management practices in increasing the productivity of skilled labor. As
our results suggest, the potential to unlock greater economic growth is ubiquitous.

The remainder of the paper is structured as follows. Section 2 provides a detailed contex-
tual background and outlines the experimental design. Section 3 reports the results of the
field experiment, focusing on productivity change, resultant efficiency gains, and measurable
spillover effects. Section 4 concludes. The online appendix includes additional theoretical
and empirical analysis.

2. Background and Experimental Design
In this section, we highlight the three productivity-related behaviors under investigation
(section 2.1), the field experimental design (section 2.2), and the details of implementation
(section 2.3), including a description of the sample and the method of randomization.

2.1 Captains’ Behavior and Fuel Efficiency
While many of the decisions of airline captains’ are important in determining fuel use, we
worked with VAA to identify three measurable and non-overlapping levers to improve pro-
ductivity for the purpose of this study: Fuel Load, Efficient Flight, and Efficient Taxi.

9While we do not have access to granular safety data that allows for robust analysis on this front, VAA has
assured us that, according to their careful and meticulous analyses, there were no fuel-related safety incidents during
or following the experiment. However, the lack of means to robustly assess potential nuanced changes in flight safety
or captains’ risk-taking is a shortcoming of our data. In addition, we are unable to investigate any unobserved
consequences from multitasking (a la Holmström and Milgrom, 1991) or unintended impacts on customer satisfaction
due to lack of data on these outcomes.
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Behavior 1: Fuel Load

The first lever concerns a pre-flight procedure known in the aviation industry as the Zero
Fuel Weight (ZFW) adjustment. Approximately 90 minutes prior to each flight, captains
utilize flight plan information (e.g., expected fuel usage, weather, and aircraft weight) in
conjunction with their own professional judgment to determine initial fuel uptake, which
usually corresponds to approximately 90% of the anticipated fuel necessary for the flight.
This amount is fueled into the aircraft simultaneous to the loading of passengers and cargo.
Near to completion of passenger boarding and cargo/baggage loading, the pilots—now on the
flight deck—receive updated information regarding the final weight of the aircraft and may
adjust their fuel uptake accordingly. The information they receive from Flight Operations
includes a ZFW measure, which indicates the weight of the aircraft with passengers and
cargo onboard, as well as the Takeoff Weight (TOW), which additionally includes fuel.

Captains then perform a ZFW calculation in which they first determine the amount by
which they should increase or decrease planned fuel load based on the final ZFW using
a mathematical formula that is standard across the airline industry. Should they decide
to increase the fuel load, they subsequently compute a second iteration to account for the
additional fuel necessary to carry the increased fuel load. If the fuel previously loaded onto
the aircraft is sufficient according to the calculations, the captain may choose not to load
additional fuel. At present, the captain makes this calculation at the beginning of each flight
(the process is not automated).

We denote this binary outcome variable as Fuel Load. Fuel Load indicates whether the
double iteration calculation has been performed and the fuel level adjusted accordingly. We
deem the captains’ behavior successful if their final fuel load is less than or equal to 200
kg above the “correct” amount of fuel as dictated by the calculation.10 This allowance
prevents penalizing captains for rounding and slight over-fueling on the part of the fueler
while providing measurable targets for captains in two treatment groups. According to VAA,
accurate Fuel Load adjustment should be performed on every flight, corresponding to 100%
attainment of the metric provided. In the thirteen months prior to the experiment, this
behavior was performed correctly on just 42% of the flights (see Table 3).

Behavior 2: Efficient Flight

The second behavior is an in-flight consideration, Efficient Flight, which captures whether
captains (in conjunction with their co-pilots) use less fuel during flight than is projected in
the updated flight plan. An original conservatively cost-optimized flight plan is drawn up
several hours prior to departure based on flight-specific information and performance data
that is particular to the type of aircraft to be flown. Inputs to the flight plan are updated
subsequent to decisions made on Fuel Load so that decisions regarding the first metric
do not affect one’s ability to meet this in-flight metric. Efficient Flight captures whether

10Using data from a major U.S. airline, Ryerson et al. (2015) estimate that 4.5% of fuel burned on an average flight
is attributable to carrying unused fuel, and that more than 1% of fuel burned on an average flight is due to addition
of contingency fuel “above a reasonable buffer”. Virgin Atlantic deemed 200 kg—equivalent to allowing for 0.5% error
in the calculation—a reasonable buffer to allow for rounding and fueler error. Our results in Section 3 are robust to
upward and downward adjustments of this buffer by 50 kg.
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captains have actively engaged in fuel-efficient practices between takeoff and landing, such as
requesting and executing optimal altitudes and shortcuts from air traffic control, maintaining
ideal speeds, performing continuous climb and descent approaches, optimally adjusting to en
route weather updates, and ensuring efficient aerodynamic arrangements with respect to flap
settings as well as takeoff and landing gear. Captains may approximately predict the fuel
savings of, for example, changing speeds or altitudes using computers on board the aircraft.

This in-flight metric is designed to capture various available risk-free and fuel-optimizing
behaviors that require effort and are not always implemented. Furthermore, by focusing
on fuel use rather than the execution of specific behaviors, the metric affords captains the
flexibility to achieve the target while using professional judgment to ensure that safety re-
mains the utmost priority. Under some uncommon circumstances, operational requirements
dictate that captains sacrifice fuel efficiency (and VAA accepts the captains’ decisions as
final), so we would not expect even a “model” captain to perform this metric on 100% of
flights, though the metric should be attainable on a vast majority of flights (contrasted with
31% pre-experimental attainment). In our analysis, the Efficient Flight indicator variable is
1 if the actual in-flight fuel use does not exceed the projected fuel use (adjusted for actual
TOW), and 0 if the in-flight fuel use is more than projected.11

Behavior 3: Efficient Taxi

The final behavior, Efficient Taxi, occurs post-flight. Once the aircraft has landed and the
engines have cooled, captains may choose to shut down one (or two, in a four-engine aircraft)
of their engines while they taxi to the gate, thereby decreasing fuel burn per minute spent
taxiing. Captains meet the criteria for this metric if they shut down one or more engines
during taxi-in.12 As with Efficient Flight, there are circumstances characterized by technical
or operational restrictions under which the airline would not expect or prescribe captains to
undertake Efficient Taxi.13 Obstacles include geographical constraints (e.g., the placement
or layout of the runway), route complexity (e.g., number of stops, turns, or cul-de-sacs),
short taxi-in times, weather conditions, (e.g., ice or snow, or heat on asphalt surfaces), and
low visibility, all of which are uncorrelated with treatment. Nevertheless, the metric should
be attainable on a vast majority of flights, but in the 13-month pre-experimental period,
there was a relatively low attainment (roughly 34%) for this metric.

11Note that it was essential to create binary metrics for Fuel Load and Efficient Flight so we could assign targets
to captains in the targets and prosocial incentives group.

12Fuel savings from Efficient Taxi depend on scheduling and delays as savings are accrued on a per-minute basis.
Fuel savings also depend on aircraft type and only begin to accrue after engines have cooled, which takes 2-5 minutes
from touch down. Savings per minute for aircraft operated within the study are as follows: 12.5 kg (Boeing 747-400,
Airbus 330-300), 8.75 kg (Airbus 340-600), and 6.25 kg (Airbus 340-300). Efficient Taxiing data is physically stored
on QAR cards inside the aircraft, which are removed every 2-4 days to pull data. These cards can corrupt or overwrite
themselves, and also can reach full memory capacity before being removed. Therefore, data capture for Efficient Taxi
is not complete—exactly 37% of flights are missing data for this metric. The reason for the missing data is purely
technical and cannot be influenced by captains. We regress an indicator variable of missing Efficient Taxi data on
treatment indicators and find no statistically significant relationship at any meaningful level of confidence (individual
and joint p > 0.4). Consequently, this phenomenon should not affect results beyond reducing the power of estimates.

13An international survey of aircraft captains highlighted potential issues associated with excessive thrust, maneu-
verability, and extensive workload that may preclude them from undertaking this behavior in particular circumstances
(Balakrishnan et al., 2011).
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2.2 Experimental Design
In accordance with captains’ optimization problem as proposed in our theoretical model (see
Appendix A), the eight-month field experiment focuses on four management practices target-
ing productivity: monitoring (control), performance information, performance targets, and
prosocial incentives. Our goal is to maximize productivity in relation to Fuel Load, Efficient
Flight, and Efficient Taxi. Respectively, these behaviors allow us to measure captains’ effort
before takeoff, during the flight, and after landing. The captains did not receive detailed
information relating their decision-making to their fuel efficiency prior to this experiment,
consistent with both airline and industry standards.14

Importantly, all eligible VAA captains were included in the experimental sample.15
Hence, captains did not select into the experiment, and as a result we can estimate the
average treatment effect for the entire roster of eligible captains in VAA. As such, our be-
havioral parameter of interest shares much in common with that estimated in a natural field
experiment (see Al-Ubaydli and List, 2015). Yet, all captains knew that they were part of
an experiment, and therefore our study shares features with both framed and natural field
experiments (Harrison and List, 2004).

We observe captains’ behavior from January 2013 through March 2015, and the experi-
mental window was from February through September of 2014. During this period, monthly
branded feedback reports pertaining to the previous month’s flights were sent to the home
addresses of treated captains, who received their first feedback report in mid-March 2014
and their final feedback report in mid-October 2014. The experimental treatment groups
can be summarized as follows:

Control Group: Monitoring. All captains included in the study were aware that
they were part of an experiment; that is, the monitoring (control) group did not receive any
feedback but was aware that their productivity was being monitored.16 Two weeks prior
to the study start date of February 1, 2014, all captains were informed that VAA would
be undertaking a study on fuel efficiency as part of its "Change is in the Air" sustainability
initiative. The initial letter outlined the three performance-related behaviors to be measured

14One might question why VAA did not perform these management practices prior to the study. Claire Lambert,
Fuel Efficiency Manager at VAA during the study, explains, “There are a number of reasons why Virgin Atlantic was
not undertaking this type of initiative in earlier years. Firstly, we had not had much exposure to behavioral science
before we established our partnership with the universities. Secondly the granularity of data required to implement
the study was a development for us. For airlines, the introduction of the EU Emissions Trading Scheme in 2010
really drove the need for better data, and the emergence of data service providers’ software systems at around the
same time enabled us access to the data. Thirdly, undertaking this study, even having outsourced a large portion of
the experimental planning and implementation to the academic team, was quite labor and time-intensive, from the
early-stage engagement with our pilot union and captains through to the frequent data processing and collaboration
with the academic team to conduct the experiment properly. We were already tackling most of the other fuel efficiency
margins, and with access to the newly available data, we found ourselves in a position to advance our continuously
evolving fuel efficiency strategy by providing nuanced data to captains to facilitate fuel-efficient decision making in
the flight deck. The academic research partnership provided an opportunity to do so in an innovative way and to test
how such a strategy might be optimized going forward.”

15Additionally, all routes were included in the study apart from within U.K. flights; Appendix B contains a map
of all VAA destinations during the study period.

16A pure monitoring effect aligns with agency theory (e.g., Alchian and Demsetz, 1972; Stiglitz, 1975), as well as
with experimental results such as those in Boly (2011), Nagin et al. (2002), and observational study results from
Hubbard (2000, 2003) and Pierce et al. (2015).
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and the possible study groups to which the captains may be randomly assigned.17 Captains in
treatment groups were to receive letters the following week to inform them of what to expect
in the coming months, and the monitoring group would receive no additional information.

In the final week of January 2014, VAA sent letters to all treated captains informing
them of the intervention to which they had been assigned. The letters included a sample
feedback report, which contained the individuals’ targets if they had been assigned to either
the targets or prosocial group.18

Treatment Group 1: Information. Each feedback report details the captain’s perfor-
mance of Fuel Load, Efficient Flight, and Efficient Taxi for the prior month (see Figure A1
in Appendix C). Specifically, the feedback presents the percentage of flights flown during the
preceding month on which the captain successfully implemented each of these metrics. For
instance, if a captain flew four times in the prior month, successfully performing Fuel Load
and Efficient Taxi on one of the flights and Efficient Flight on two of them, his feedback
report would indicate 25% attainment for the former behaviors and 50% attainment for the
latter. This treatment aligns closely with the “Performance Tracking” and “Performance
Review” management practices outlined in Bloom and Van Reenen (2007, 2011).

Treatment Group 2: Targets. Captains in this treatment group received the same
information outlined above but were additionally encouraged to achieve personalized tar-
gets of 25 percentage points above their pre-experimental baseline attainment levels for each
metric (capped at 90%; see Figure A2 in Appendix C). The targets were communicated to
these captains prior to the start of the experiment. An additional box is included in the
feedback report to provide a summary of performance (i.e., total number of targets met).
Captains were not rewarded or recognized in any public or material fashion for their achieve-
ments. This intervention is in line with the management practices called “Target Balance”,
“Target Connectedness”, “Time Horizon of Targets”, “Target Stretch”, and “Clarity and
Comparability of Targets” (Bloom and Van Reenen, 2007, 2011).19

Treatment Group 3: Prosocial Incentives. In addition to the information and
targets outlined above, those in the prosocial incentive treatment group were informed that
achieving their targets would result in donations to charity (see Figure A3 in Appendix C).
Specifically, for each target achieved in a given month, £10 was donated on behalf of the
captain to a chosen charity. When captains in this group were informed of their assignment
to treatment, they were offered the opportunity to choose one of five diverse charities to
support with their prosocial incentives: Free the Children, MyClimate, Help for Heroes,

17Given that all captains were aware of the start date of monitoring, we additionally derive estimates of the effects
of monitoring on captains’ performance in the manner of Bandiera et al. (2007). The identified effects for monitoring
are therefore not experimental per se, but are based on careful analysis controlling for relevant observables and trends.

18Captains were encouraged to engage with the material and send any questions to an email address created
specifically for study inquiries. Once the experiment was complete, we sent treated captains a debrief letter informing
them of their overall monthly results with respect to their targets (if in the targets or prosocial treatment groups) and
their total charitable donations (if in the prosocial incentives treatment group). All (treatment and control) captains
were informed that a follow-up survey would be sent to their company email addresses in early 2015. The follow-up
survey was designed and administered by the academic researchers alone. Again, captains were assured that data
from their responses would be used for research purposes only, that their responses would remain anonymous, and
that VAA would not be privy to individual-level information provided by survey respondents.

19Such target-setting has its roots in industrial organization psychology through SMART (specific, measurable,
attainable, relevant and timebound) targets (Locke and Latham, 2006)
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Make A Wish UK, and Cancer Research UK.20 Therefore, captains in this group each had
the opportunity to donate £30 ($49) per month for a total of £240 ($389) to their chosen
charity over the course of the eight-month trial. Captains were reminded each month of the
remaining potential donations that could result from realizing their targets in the future.

While incentives are a cornerstone of management in Bloom and Van Reenen (2007) (and
beyond), prosocial incentives are not explicitly included in typical management surveys to
date. Our research contributes to the conversation surrounding whether and how personnel
economics might broaden the notion of people management to incorporate such incentives.
Evidence appears to suggest that prosocial considerations may be quite important to em-
ployee productivity, particularly on the extensive margin.21 That said, many of the existing
studies focus on low-stakes occupations, or tasks that do not require high human capital.22
Our goal is to understand how conditional prosocial incentives causally change productivity
of high-skilled employees in high-stakes work situations.

The overarching goal of our design is to identify the marginal effects of management
practices, with each component of conditional incentive provision—monitoring, information,
targets, incentives—considered in isolation (see Table 1).23 This design is in contrast to the
previous literature that has focused on applying the Bloom and Van Reenen (2007) man-
agement practices in a bundled manner (Bloom et al., 2013; Fryer Jr., 2014; Tsai et al.,
2015; Bloom et al., 2015; Fryer Jr., 2017; Bruhn et al., 2018). Such studies have difficulties
identifying the marginal effect of each management practice on productivity. In other words,
to provide conditional incentives to an employee, a firm needs to put in place an appropriate
target. In order to provide a meaningful target, a firm needs to share information on the em-
ployee’s performance. In providing such information, the employee becomes aware that the
manager can monitor her performance. Accordingly, each additional component is layered to
isolate the real behavioral motivator behind conditional incentives, a strategy that most per-
sonnel economists would support first and foremost to motivate employee performance (see
Holmström’s (1979) seminal theoretical work and Lazear’s (2000) seminal empirical work).

20Eighteen captains selected a charity by emailing the designated project email address, and 67 captains who did not
actively select a charity were defaulted to donate to Free the Children. Captains could choose to remain anonymous,
otherwise exact donations were attributed to each individual (identified by their first initial and last name).

21On the supply side, workers have revealed a preference for being employed by a company with strong CSR
practices, which appear to attract higher ability types and increase productivity. This literature started in the 1990s
with the observational datasets in Turban and Greening (1997) and Greening and Turban (2000), and recent field
experiments highlights that CSR can motivate high-ability types to apply for job openings (Hedblom et al., 2016).

22Online or lab experiments have assessed the effect of charitable incentives on productivity in low-effort tasks
(i.e., the intensive margin)—see Tonin and Vlassopoulos (2014), Imas (2014), and Charness et al. (2016). Anik et al.
(2013) use a field study to estimate the impact of unconditional charitable bonuses on productivity, and Tonin and
Vlassopoulos (2010) recruit university students for a field experiment using charitable incentives for a data entry task
to measure pure and impure altruism. Elfenbein et al. (2012) show that sellers who tie products to a charitable
donation may be deemed more trustworthy by consumers. Relatedly, field experimental research into unconditional
gifts is a burgeoning area of research—see Gneezy and List (2006); Bellemare and Shearer (2009); Hennig-Schmidt
et al. (2010); Englmaier and Leider (2012); Kube et al. (2012); and Cohn et al. (2015).

23We acknowledge that management practices may extend beyond monitoring, information provision, target setting,
and incentive provision. For example, the Bloom and Van Reenen (2007) survey additionally captures more intangible
and complex management dynamics, such as the means by which problems are addressed within the organization
and the processes behind decisions to hire, promote, retain, and fire employees.
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2.3 Further Experimental Details
2.3.1 Sample

Our data consists of the entire eligible universe of VAA captains in 2013 and 2014 (N =
335), of which 329 are male and 6 are female.24 Of the debrief survey respondents (N =
202), 97 classified their training as military and 102 as civilian (the remaining declined to
state). Eleven captains are “trusted pilots” selected for pre-study consultation regarding
study feasibility and communications25, and 62 captains are “trainers” who are responsible
for regularly updating and training their colleagues in the latest flight techniques. Captains
range from 37 to 64 years of age, where the average captain is 52 years old and had been an
employee of the airline for over 17 years when the study initiated. Captains in the sample
flew five flights per month on average, where the captain flying most averaged almost eight
flights per month and the captain flying least averaged just over two flights per month.

The resulting dataset consists of 42,012 flights and 110,489 observations of the three
fuel-related behaviors. Among other variables, we observe fuel (kg) onboard the aircraft at
four discrete points in time: departure from the outbound gate, takeoff, landing, and arrival
at the inbound gate. In addition, we observe fuel passing through each of the aircraft’s
engines during taxi, which provides a precise measure of fuel burned on the ground. We
use such data to understand how the management practices ultimately affect fuel use in
Section 3.2. We also observe flight duration, flight plan variables (i.e., expected fuel use,
flight duration, departure and arrival destinations), and aircraft type. We control for several
flight-level variables—e.g., ports of departure and arrival, weather on departure and arrival,
whether the aircraft had just received maintenance (belly wash, engine change), and aircraft
type—and individual fixed effects and captain-level time-varying observables, such as current
contracted work hours and whether the captain had attended VAA’s annual training.

Four months after the study’s completion, we elicited captains’ job satisfaction and pref-
erences over the various management practices through an online survey (response rate =
60%). We report these respective analyses in Sections 3.3.3 and 3.3.4. Through the survey,
we sought to gain a rigorous understanding of the relevance of management to subjective
reports of job satisfaction, an important outcome of particular relevance in this context as
mental health concerns have gained prominence in the aviation industry.26 Similarly, ascer-
taining captains’ demand for various management practices allows us to glean more in-depth
insights into the effects of these practices on employees’ choices and well-being.

24While we understand that there may be partner selection bias inherent in our (or any) firm-level study (Allcott,
2015), our experience with many other international commercial airlines suggests they are no more (and sometimes
considerably less) advanced in their management of captains’ fuel efficiency. The most advanced airlines—including
VAA—purchase software that allows management to visualize some flight-relevant information ex post. The aviation
sector appears similar to other sectors on this dimension. For instance, Bruhn et al. (2018) find that small- to
medium-sized enterprises in Mexico do not use particular management consulting services because they lack the
funds, do not have knowledge of potential benefits, or simply have not considered the possibility.

25We run the data analysis both including and excluding trusted pilots and the results do not change.
26For instance, Wu et al. (2016) surveyed a random set of 1,866 captains and found that 13% had clinical depression

and 4% had suicidal thoughts in the last two weeks. Moreover, the recent U.S. Federal Aviation Administration has
made a recommendation for greater focus on pilot mental health in aviation policy and practice (Federal Aviation
Administration, 2015).
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2.3.2 Randomization

To randomize captains into treatment, we first blocked three months of pre-experimental
data (September through November, 2013) on five dummy variables that captured whether
subjects were above or below average for the: i) number of engines on aircraft flown, ii)
number of flights executed per month, and iii) attainment of the three selected fuel-relevant
behaviors, which are our primary dependent variables. Number of engines and monthly
flights proved significant in predicting the selected outcome behaviors in preliminary re-
gressions. Once blocked, captains were randomly allocated to one of the four study groups
through a matched quadruplet design (for further details, see Appendix D). To ensure that
individual-specific observable characteristics are balanced across groups, we performed sub-
sequent balance tests for seniority, age, trainer status, and trusted pilot status as well as
flight plan fuel use (as a proxy for average flight distance), actual fuel use, average number
of engines on aircraft flown, flying frequency, and the three targeted behaviors (see Table 2).

Table 3 and Figure 1 provide a summary description of captains’ performance before
and during the experimental period within each experimental group. In accordance with
the balance checks above—which focus on just three months of pre-experimental data—the
summary statistics from January 2013 through January 2014 (i.e., Table 3, ‘Before Experi-
ment’) provide assurance that the pre-experimental behavioral outcomes are balanced across
various study groups. None of the differences across groups are statistically discernible. In
short, an exploration of all available aspects of captain and flight data reveals that the ran-
domization was successful in that the observables are balanced across the four experimental
conditions.27

3. Results
We summarize our main results in four steps. First, we estimate the impacts of the four
management interventions on the selected behaviors. Second, we assess the consequences
for overall fuel usage. Third, we consider whether the study affected the airline’s reported
delays. Fourth, we assess spillovers with respect to delays, safety, greenhouse gas emissions,
and captains’ well-being.

3.1 The Effects of Management Practices
Figure 2 presents aggregated data for each of the targeted fuel-related behaviors for the
21-month period for which we have pre-experimental and experimental data. This period
includes 13 months of data prior to the announcement of the experiment (i.e., monitoring),
and 8 months of within-experiment data. The dashed vertical line indicates the beginning of
experimental monitoring. The pooled data in Figure 2a indicates that the implementation
of Efficient Flight and Efficient Taxi substantially increases after monitoring is announced.

27In Tables A1 and A2, we additionally check for balance in pre-experimental trends for each behavior-group pairing
for differences in pre-experimental fuel use trends, respectively. We find no major differences in these trends across
conditions.
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For both behaviors the increases are approximately 10 percentage points in the first month—
equivalent to a 25-33% treatment effect—with a vast majority of captains experiencing im-
provements (see Figure 3). Concerning Fuel Load, captains increase implementation by
approximately 4 percentage points in the month following the announcement of monitoring,
equivalent to a 10% treatment effect. Removing treatment effects, Figure 2b also suggests
an increase in implementation due to monitoring, albeit less pronounced due the exclusion of
treatment effects. The difference in behaviors before and during the experiment—including
that of the control captains—leads to our first formal result:

Result 1. The performance of captains in the control group improves considerably upon
announcement of behavioral monitoring.

While the aforementioned summary statistics are certainly consistent with Result 1, they
do not account for the data dependencies that arise from each captain’s provision of more
than one data point, nor any trends in the pre-experimental period. To accommodate the
panel nature of the data set, we estimate a regression model of the form:

EfficientBehaviorit = α + Expit · Titβ + Expitγ + Titδ +Xitζ + τt + ωi + eit

where EfficientBehaviorit equals one if captain i performed the fuel-efficient behavior on
flight t, and equals zero otherwise; Expit is an indicator variable that turns on during the
experimental period; Tit represents a vector with indicator variables for the three treatments;
Xit is a vector of control variables; τt is a linear monthly time trend; and ωi is a captain fixed
effect. We include all available and relevant flight-level variables as controls, which include
weather (temperature and condition) on departure and arrival, number of engines on the
aircraft, airports of departure and arrival, engine washes and changes, and airframe washes.
Additionally, we control for captains’ contracted flying hours and whether the captain has
completed an annual training.28

We estimate the above difference-in-difference model specification for each of the behav-
iors treating the first day of the experiment as February 1, 2014, when monitoring of captains
begins. Three different empirical approaches yield qualitatively similar results: a linear prob-
ability model (LPM), a probit model, and a logit model. For ease of interpretation, we focus
on the results of the LPM in Table 4.29

Given that we do not have a group of captains lacking knowledge of experimental moni-
toring, we perform an investigation of pre-experimental trends to ensure that our econometric

28There are various training channels, foremost of which is time spent in the simulator in which captains must pass
assessments; we do not have accurate data on these trainings. We control for attendance at the two-day “Ops Day”
seminar, a gathering of small groups of pilots (approximately 20 per training) that includes discussion of the airline’s
goals and directions, with some informal training for pilots.

29Robust standard errors are clustered at the captain level. We also present Newey-West standard errors that are
robust to heteroskedasticity and arbitrary autocorrelations within each captain. We perform two robustness checks
to control for attrition and different lag lengths in the Newey-West errors. To ensure attrition does not influence
these results, we include Table A3 in Appendix D, which performs the same specification excluding quadruplets in
our randomization within which captains attrited (all five of which did so prior to the announcement of the study) -
we find no differences in our results. Furthermore, we estimate the Newey-West errors with lags of m=1 and m=4 to
test the robustness of our results to the underlying model (Newey and West, 1987). Our results are identical under
each model.
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estimates of the effects of monitoring do not merely represent ongoing shifts in behavior that
would have taken place despite the study. Figures 4a-4c demonstrate pre-experimental trends
(i.e., from January 2013 through January 2014) and provide a visual representation of the
differences in implementation of the prescribed metrics before and during the experiment.
Across Fuel Load and Efficient Flight, it is clear that there is no upward trend for any group
pre-experiment. For Efficient Taxi, we do observe an upward trend, though there remains a
substantial increase in the level of implementation during the experimental period across all
groups. To control for this trend, we estimate the specification controlling for a linear time
trend.30 As expected, including a linear trend attenuates the monitoring effect on Efficient
Taxi, where the metric drops from 12.5 percentage points to 3.8 percentage points.31

Our main regressions in Table 4 therefore reports the results of the difference-in-difference
specification controlling for linear time trends. We first note that the coefficient estimate of
the experimental period (“Expt”), which provides a point estimate of the extent to which
the control group improves their performance once monitoring begins. The influence of
monitoring is apparent: the control group increases their implementation of Fuel Load by
3.3 percentage points (7.8% effect, 0.07 standard deviations (σ), p < 0.05), Efficient Flight by
13.2 percentage points (42.4% effect, 0.29σ, p < 0.01), and of Efficient Taxi by 3.8 percentage
points (10.8% effect, 0.08σ, p < 0.05).

The above insights lend evidence in favor of a strong monitoring effect, a result consistent
with the importance of social pressure in our theoretical structure. They do not, however,
shed light on the incremental effectiveness of the treatments in stimulating fuel-efficient
behaviors. Results 2-4 address this central question:

Result 2. Providing captains with information on recent performance moderately improves
their fuel efficiency (particularly with respect to Efficient Taxi).

Result 3. The inclusion of personalized targets significantly increases captains’ implemen-
tation of all three measured behaviors.

Result 4. Adding a charitable component to the personalized targets intervention does not
induce greater effort than providing targets alone.

Evidence of Result 2 can be found in Table 3 and Figures 1-4, which suggest that—
despite increased performance in Fuel Load and Efficient Flight—the differences between
the control and information groups are rather slight. Yet, there is a considerable change
in Efficient Taxi implementation between the information and control groups (58.8% versus
50.7%). The standard difference-in-difference model estimates in Table 4 complement the
raw data in Table 3, indicating that the information treatment induces captains to engage
in more fuel-efficient taxiing behavior. The coefficient estimate suggests that the percentage
of flights for which captains receiving the information treatment turned off at least one
engine while taxiing to the gate increases by 7.9 percentage points (p < 0.01) relative to the
improvement exhibited in the control group.

When considering the behavior of captains who receive personalized targets, we observe
consistent treatment effects across all three performance metrics. From Tables 3 and 4 and

30See Table A4 in Appendix E for specifications without controlling for a linear time trend and without controls.
31This effect holds because the linear trend accounts for a growing share of gains during the experimental window.
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Figures 1-4, it is apparent that the targets treatment pushed each measured behavior in the
fuel-saving direction and the effects also appear to be in the fuel-saving direction for captains
receiving prosocial incentives. Table 4 reveals positive and statistically significant effects of
the intervention for a majority of behavior-treatment combinations, even beyond the sizable
effect of monitoring. Most striking is the effect of the interventions on the implementation
of Efficient Taxi, which captains in the targets group undertook on almost 10 percentage
points more flights (19.1% effect, 0.19σ, p < 0.01).

We now isolate the incremental productivity impacts of each management practice in
turn. The coefficients associated with the targets and prosocial treatments in Table 4 are
very similar (βtargets = 0.025 vs. βprosocial = 0.022 for Fuel Load; βtargets = 0.047∗∗∗ vs.
βprosocial = 0.037∗∗∗ for Efficient Flight; and βtargets = 0.088∗∗∗ vs. βprosocial = 0.096∗∗∗
for Efficient Taxi).32 However, these two groups of captains appear to outperform captains
lacking performance targets. To investigate statistically this claim, we pool captains receiving
personalized targets (i.e., targets and prosocial treatment groups) and compare outcomes to a
pooled information and control group in an additional regression. We find that captains who
receive targets significantly outperform those who do not on all three dimensions: Fuel Load
(β = 0.020∗), Efficient Flight (β = 0.034∗∗∗), and Efficient Taxi (β = 0.052∗∗∗). A similar
exercise confirms that prosocial incentives do not significantly improve behavior compared
to targets alone. Thus, while information is an important mechanism in encouraging fuel-
efficient behavior change, targets augment its effect in a manner that prosocial incentives do
not appear to boost further.33

We supplement this analysis by investigating whether various captains are motivated
to increase implementation of just one of the behaviors, or whether the effects are driven
by some captains’ improving on multiple behaviors relative to their own implementation
prior to the study (see Appendix F). On average, (some) captains are more likely to increase
implementation of both Fuel Load and Efficient Flight, but these captains did not necessarily
also improve on Efficient Taxi. Similarly, captains who respond most strongly on the taxiing
dimension may not have been more likely to fuel and fly efficiently. We therefore infer
that the effects are not solely driven by a small subset of captains improving on all three
dimensions. Rather, many captains are increasing their efficiency in various phases of flight.

Importantly, our data provide the ability to go beyond short-run substitution effects
and explore treatment effects in the longer run. We therefore conduct a more nuanced
investigation of the treatment effects by exploring their persistence after the experimental

32These treatment effects are extremely similar to those identified using experimental data alone (see Table A5 in
Appendix E).

33Since each treatment builds on the last, we can “control” for the contents of previous treatments and are therefore
able to make distinct comparisons across treatments. If we solely examine the comparison between the information
group and the targets group, we find three positive coefficients: Fuel Load (β = 0.015, p = 0.33), Efficient Flight
(β = 0.020, p = 0.17), and Efficient Taxi (β = 0.016, p = 0.36). For reference, the estimates of the effects of
prosocial incentives relative to targets are relatively attenuated: Fuel Load (β = 0.003, p = 0.84), Efficient Flight
(β = 0.010, p = 0.52), and Efficient Taxi (β = −0.008, p = 0.67). That said, we do not have enough statistical
power (partially due to the decreased sample size when comparing just two experimental groups) to argue that the
coefficients are statistically different from zero, though the effect sizes are noteworthy.
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window.34 Inspection of these data yields a fifth result:

Result 5. Treatment effects attenuate or disappear after treatment is removed, though the
monitoring effect remains for Fuel Load and Efficient Flight.

In the six months following the experiment, control captains continue to outperform their
pre-experimental baseline implementation of Fuel Load (β = 0.043, p < 0.05) and Efficient
Flight (β = 0.239, p < 0.01; see columns 1-3 of Table 5).35 Furthermore, the monitoring and
information effects on Efficient Taxi effectively disappear once the experiment stops, while
the treatment effects of targets and prosocial incentives remain quite strong (β = 0.078, p
< 0.05 and β = 0.062, p < 0.05, respectively). Discontinuation of the feedback letters leads
to a reduction in implementation of Efficient Flight for all treated captains, suggesting a
benefit of repeated performance feedback for this outcome metric (see column 5).

3.2 Fuel Savings
Given the substantial behavioral change observed during the experimental period of the
study, we report economically significant fuel and cost savings for our final formal result:

Result 6. Largely due to fuel savings from the monitoring effect, we estimate the total
overall savings to be 7,769 metric tons ($6,106,434) from the study throughout the eight-
month experimental period. The three experimental treatments alone led to an estimated
1,355 metric tons in fuel savings and $553,000 in cost savings for Virgin Atlantic.

To determine fuel savings from the study, we estimate within-captain differences in the
disparity between flight plan (planned) fuel use and actual fuel use from the pre-study period
to the study period (Table 6). We calculate fuel savings using an intent-to-treat approach
captured in the following OLS specification, where the difference-in-difference regression
coefficient provides the fuel savings per flight for each respective group:

Fit = α + Expit · Titβ + Expitγ + Titδ +Xitζ + ωi + eit

where Fit is the fuel saved per flight (i.e., the difference between planned and actual fuel
use) for captain i at time t. We sum the per-flight savings for each treatment group with
the average per-flight monitoring effect to estimate the average flight-level savings for each
group, which we then multiply by the number of flights flown by captains in the respective
groups during the experimental period (see Notes of Table 6).

For the control group, we estimate the total fuel savings to be 1,648 tons (496.1 kg per
flight saved × 3321 flights). For the treatment groups, we estimate additional fuel savings
beyond the control group of 500 tons in the information group (150.19 kg x 3330 flights),

34We also investigate the dynamics of captains’ responses within each treatment month with respect to temporal
distance from the previous feedback report received. We do not find consistent evidence of a ‘salience effect’ (see
Table A6 in Appendix E).

35It is important to note here that this effect may be due to captains’ belief that monitoring continued after the
experiment ended. Since we do not elicit such beliefs, we cannot distinguish between a persistent effect of having
been monitored versus a continued effect of monitoring.
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498 tons in the targets group (165.1 kg × 3016 flights), and 357 tons in the prosocial group
(109.7 kg × 3258 flights). Summing these marginal effects with the monitoring effect (which
affects all groups), we estimate the total savings for the information, targets, and prosocial
incentives groups to be 2,152 metric tons (“ton” hereafter), 1,994 tons, and 1,974 tons,
respectively. Taken together, the three treatments led to a marginal 1,355 ton decrease in
fuel use in comparison to the control group, and incorporating the monitoring effects into
the calculation, fuel savings sum to 7,769 tons for an overall value savings of $6.1 million
(in 2014 fuel prices, where a ton of fuel cost $786). 36,37 For comparison, using a regression
discontinuity design with randomly timed simulator trainings as input variables, we find
no effect of simulator trainings on fuel efficiency, even when interacted with experimental
monitoring (see Appendix I).

3.3 Additional Spillover Effects
In this section, we examine four potential spillovers from our experimental treatment groups.
These include the impact on delays, greenhouse gas emissions, captain welfare (measured
through job satisfaction), and the demand for further management practices.

3.3.1 Delays

As demand for air travel grows, on-time departure becomes an increasingly important aspect
of operational efficiency for commercial airlines. Airlines may incur direct financial sanctions
for departure delays due to regulations on airport slot misuse, and may also experience
additional fuel-related costs in their attempts to recover time to remain on schedule for
arrival. It is quite conceivable that departure delays could increase in frequency during
the experimental period, since we are encouraging captains to make a more deliberate fuel
calculation and to consider the fuel efficiency of in-flight decisions. Alternatively, there are
a number of reasons why we might expect the number of delays to decline, such as the case
when captains’ anticipate monitoring extends to other important outcomes.38

Table A7 summarizes results of three fixed effects regressions specified as in Section 3.1,
but with delay-related dependent variables. The first dependent variable captures whether

36Similar data-driven fuel savings estimates can be calculated separately for each of the three discrete behaviors
measured in a given flight (see Table A12 in the online appendix). We find significant fuel savings across all of the
groups during the experimental period compared to the pre-experimental period, and the highest fuel savings comes
from Efficient Flight followed by Fuel Load, as expected. We find that the targets and prosocial groups exhibit the
largest fuel savings, consistent with the greatest changes in observed behavior.

37Comparable reductions in fuel demand would require fuel prices to increase by between 2.3% and 17.5%, according
to price elasticity of jet fuel demand estimates from the literature. See Appendix H.

38Beyond possible anticipation that delays would receive additional scrutiny during the study, captains’ drive to
implement both the Fuel Load and Efficient Flight behaviors could have encouraged punctuality in their pre-flight
procedures. In the case of the former, by narrowing their focus on performing the calculation properly—thereby
reducing attention paid to other discretionary professional judgment calls—the time taken to implement this pre-
flight behavior may be reduced. With respect to the latter, captains are much less likely to achieve Efficient Flight
if they arrive late to the port of arrival due to having missed a landing slot, so on-time takeoff is important to avoid
such delays on arrival. That most of the effect of the study comes in preventing short delays (see Table A7) appears
to justify the plausibility of the above considerations, as even a savings of a few minutes would, on the margin, trigger
a decrease in recorded delays during the study period.
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the flight was delayed (‘Delays’). The second dependent variable indicates whether the flight
was between 1 and 15 minutes delayed (‘Short Delays’), and the third indicates whether the
flight was delayed more than 15 minutes (‘Long Delays’).

Empirically speaking, there does not appear to be evidence in favor of an increase in
delays during the experimental period. The Expt coefficient in Column 1 demonstrates that
delays actually decreased by 4.3% (p < 0.01) during the experiment. The Prosocial treatment
induces an additional reduction in delays of 2.6%, which appears to be largely driven by a
decrease in short delays (see Column 2). Thus, we can be confident that delays did not
increase due to the management strategies implemented in the experiment, and indeed there
is some evidence that the number of delays actually declined.

3.3.2 Greenhouse Gas Emissions

Improving fuel efficiency also reduces environmental costs. A fixed emissions factor of 3.15
tons of CO2 per ton of fuel allows for straightforward calculation of the emissions savings.
Deriving from the fuel savings estimates in Section 3.2.1, our study prevented 24,472 tons
of CO2 from entering the atmosphere (excluding savings from persistent behavior change).
Given the lack of consensus on the social cost of carbon (SCC), we use two measures of the
SCC to derive monetized estimates of the corresponding environmental savings: the 2010
SCC of $21/ton derived in Greenstone et al. (2013) and the 2020 SCC range of $40-$80 from
Stiglitz et al. (2017). The resulting environmental savings amount to $0.51 million using the
Greenstone et al. SCC, and $0.98-$1.96 million using the Stiglitz et al. SCC range. Thus, in
industries where employees’ behavior is a determinant of fuel or energy use (e.g., shipping,
trucking, aviation, retail, and manufacturing), strategies surrounding behavior change may
present a cost-effective means to more closely align private marginal benefits with social
marginal costs, particularly in the absence of carbon prices. As such, our study highlights a
new way to combat firm-level externalities: target workers rather than the firm as a whole.
More work in this area would be welcome.

3.3.3 Captain welfare

Captains’ wellbeing is central to airline operations and passenger safety. It is therefore
worthwhile asking how captains themselves are affected by the various forms of managerial
oversight. We take a first step down this important path by considering captains’ job sat-
isfaction. Table A8 presents the intent-to-treat estimates for the effects of each treatment
on job satisfaction relative to the control group. The coefficient estimates are positive for
all treatments. The largest estimate indicates a positive and significant effect of prosocial
incentives, where captains reported a 0.37-point (6.5%) higher job satisfaction rating than
captains in the control group (p < 0.10). For context, this difference in self-reported job
satisfaction is equivalent to that between an employee with poor health compared to one
with excellent health (see Clark and Oswald, 1996).

Furthermore, among captains who received personalized targets (i.e., those in the targets
and prosocial groups), those who met more targets over the course of the experiment reported
greater job satisfaction (see Table A9). More nuanced investigation reveals that performance
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on Efficient Taxi drives this result, increasing job satisfaction by 0.12 points (on an eleven-
point scale) per monthly target met. In other words, a captain who met all Efficient Taxi
targets (out of a possible eight) had a job satisfaction rating 0.96 points higher than a captain
who did not meet any Efficient Taxi targets, assuming a linear effect.39 Thus, airlines may
wish to seek means in which to assist captains in reaching fuel efficiency targets for reasons
pertaining not only to cost minimization, but also to employee well-being.

3.3.4 Demand for managerial oversight

Finally, in the study debrief survey we assess captains’ appetite for continued managerial
oversight.40 Having provided full descriptions of each treatment, we elicited captains’ feed-
back regarding the receipt of similar interventions in the future. Of the 60% of captains
who responded to the survey, 79% indicated a desire for the continuation of the management
strategies embodied in the study treatments, while only 6% expressed a preference for the
pre-study status quo. This qualitative insight supports the notion that captains’ welfare as
a result of the study appears to have improved.

4. Conclusion
Economists are increasingly confirming that management within firms is a core contributor to
the relatively high dispersion of productivity within and between sectors (see e.g., Syverson,
2011; Bloom et al., 2013). This microeconomic facet has earned its place amongst better-
understood economy-wide factors—such as the flexibility of capital and labor markets and
the regulation of these markets—in explaining sector- and firm-level productivity. In a large-
scale field experiment, we lend insights into the causal effects of management practices on
productivity in the context of skilled labor in a professional setting in the developed world.

Robust evidence indicates that monitoring of defined behaviors that are directly related to
productivity provides gains for the firm, here in the form of reduced input costs. Furthermore,
performance targets lead to productivity gains beyond those motivated by monitoring alone.
We find that prosocial incentives do not increase productivity beyond targets in this setting,
though they do lead to higher job satisfaction, which might have longer term benefits on the
extensive margin. In a practical sense, these findings have implications for any corporation
aiming to increase labor productivity. For academics, our work highlights the potential
of field experimental partnerships to inform productivity models—and provide empirical
content to those models—by examining highly-skilled professionals.

Our research speaks to multiple fields within economics. For example, in labor economics,
how best to incent workers to motivate effort in the workplace has been a principal topic of

39One should take care not to provide a structural interpretation of this result since it is garnered from non-
experimental variation.

40Each captain received an email on January 29, 2015 with a link to the study debrief survey, and the survey
closed three weeks later. A total of 202 captains at least partially completed the survey and 187 completed it,
which represents a 60% (56%) response rate. This response rate was achieved after sending each captain up to three
emails within four weeks offering incentives up to £105. We find that there are no statistically significant differences
in survey taking across experimental conditions (joint F-tests feature p = 0.69 and p = 0.68 for participation and
completion indicators, respectively).
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inquiry for decades. The imperfect relationship between employees’ effort and productivity
renders firms incapable of directly rewarding effort with precision (Miller, 1992; Lazear, 1999;
Malcomson, 1999; Prendergast, 1999). A burgeoning field experimental literature on incen-
tives and workplace initiatives attempts to understand the employee-employer relationship
and effective means by which employers may increase effort and productivity (see List and
Rasul, 2011; Levitt and Neckermann, 2014). Our research aims to advance this literature by
identifying the distinct impacts of management practices on defined measures of workplace
performance in a developed world labor context.

We augment the management literature in a number of ways. First, we marginally
test isolated management practices and demonstrate their differing effects on productivity.
This methodology is in contrast to the field experimental management literature at large,
which generally tests the effects of a broad array of management practices implemented
simultaneously. While these studies (e.g., Bloom et al., 2013; Fryer Jr., 2017; and Bruhn
et al., 2018) have brought the importance of management in explaining productivity to
the fore, we provide more nuanced understanding of the precise mechanisms underlying the
effectiveness of prevalent practices. Broad application of this methodology in future research
will lend insights into the complementarity and substitutability of the various components
that comprise each management strategy, and in which markets.

Second, we show that these well-studied practices—particularly monitoring and target
provision—improve productivity even for high-skilled employees in the developed world, a
context that has been largely neglected in the empirical management literature. As the
quality of productivity data continues to improve, opportunities to investigate management
practices rigorously in a wider variety of contexts will allow researchers to shed further light
on means by which to optimize the productivity of skilled labor.

Third, our study highlights the potential for additional benefits of such targeted manage-
ment initiatives in terms of employee welfare and greenhouse gas emissions. With respect
to the former, we find that injecting prosocial elements into employees’ incentive structures
boosts reported job satisfaction relative to a control group, providing an inexpensive op-
portunity for employers to improve employee welfare. With regard to the latter, previous
research explores how the principal-agent model can be applied to motivate the adoption of
energy-efficient technologies in the residential sector (Gillingham and Palmer, 2014); research
of this kind remains to be conducted in commercial sectors despite existing evidence of a cor-
relation between management and firm-level emissions (see Bloom et al., 2010; Martin et al.,
2012). We provide a well-identified confirmation that the principal-agent problem exists in a
relevant commercial setting, and that resulting inefficiencies extend beyond industry profits
to the welfare of the worker and of the global environment. The existence of principal-agent
problems in polluting industries additionally suggests that implementation of an otherwise
optimal Pigouvian carbon tax will result in suboptimal abatement levels.

Overall, our hope is that the research will inspire economists to consider means by which
to rigorously and ambitiously pursue knowledge of the drivers of productivity in contexts
of considerable relevance and applicability to policy makers and business practitioners in
decades to come. Understanding mechanisms through careful partnership of models and
field experimentation represents a unique path forward that holds much promise.
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Figure 1
Behavioral Implementation by Study Group Before, During, and After the Experiment

(a) Fuel Load

(b) Efficient Flight

(c) Efficient Taxi

Notes: The y-axis for each of the above graphs represents the proportion of flights for which a fuel-related behavior has been implemented before
(dark gray), during (medium gray), and after (light gray) the experiment for each experimental condition in our study (x-axis). These behaviors
are averaged at the study group level for the months in our dataset preceding (January 2013-January 2014), during (February 2014-September
2014), and following (October 2014-March 2015) the study period. The error bars represent standard errors.
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Figure 2
Behavioral Implementation Over Time

(a) Pooled

(b) Monitoring Group Only

Notes: The y-axis represents the proportion of flights for which each fuel-related behavior has been implemented,
while the x-axis indicates the corresponding month in our dataset, where January 2013 is month 1 and October 2014
is month 21, and the experiment took place during months 14 to 21.
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Figure 3
Within-Subject Implementation Changes in Control Group after Monitoring is Announced

(a) Fuel Load

(b) Efficient Flight

(c) Efficient Taxi

Notes: The data points in the graph represent the proportion of flights for which each captain in the control group
implemented the fuel-related behaviors on average before the experiment (January 2013 - January 2014), in ascending
order of pre-experimental performance. The vertical arrows represent the same proportion during the experimental
period (February 2014 - September 2014). An upward arrow indicates an improvement in implementation (as a
proportion of total flights) of the behavior, while a downward arrow indicates a decline in implementation.
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Figure 4
Linear Trend of Behavioral Implementation Over Time, by Study Group

(a) Fuel Load

(b) Efficient Flight

(c) Efficient Taxi

Notes: The y-axis represents the proportion of flights for which a fuel-related behavior has been implemented. The
x-axis represents time in months, and the dashed line indicates the start of the experiment. We provide a linear fit
of implementation for each of the four experimental groups before and after the start of the experiment, represented
by the solid lines.
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Table 1
Treatment Group Design

Monitoring Information Targets Prosocial
Control X

Treatment Group 1 X X
Treatment Group 2 X X X
Treatment Group 3 X X X X
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Table 2
Balance on Captain and Flight Characteristics

Test of Test of Test of Test of Test of Test of
C: T1: Equality T2: Equality: Equality: T3: Equality: Equality: Equality:

Control Information C=T1 Targets C=T2 T1=T2 Prosocial C=T3 T1=T3 T2=T3

Captain characteristics:
Seniority 177.93 157.16 p=0.161 174.56 p=0.825 p=0.263 171.87 p=0.682 p=0.327 p=0.863

(94.68) (97.38) (102.00) (97.17)
Age 52.23 51.93 p=0.707 51.20 p=0.232 p=0.387 52.31 p=0.926 p=0.633 p=0.193

(5.34) (5.10) (5.73) (5.15)
Trainer 0.165 0.188 p=0.687 0.185 p=0.728 p=0.960 0.202 p=0.527 p=0.817 p=0.780

(0.373) (0.393) (0.391) (0.404)
Trusted 0.035 0.047 p=0.700 0.025 p=0.690 p=0.440 0.024 p=0.660 p=0.414 p=0.971
Pilot (0.186) (0.213) (0.156) (0.153)

Flight characteristics:
Plan Ramp 76,750 78,559 p=0.440 76,666 p=0.971 p=0.764 76,042 p=0.442 p=0.294 p=0.793

(14,993) (15,467) (14,815) (15,587)
Actual Fuel 67,851 69,497 p=0.448 67,763 p=0.967 p=0.770 67,216 p=0.426 p=0.302 p=0.802

(13,861) (14,327) (13,629) (14,326)
Engines 3.439 3.483 p=0.648 3.419 p=0.840 p=0.515 3.392 p=0.633 p=0.354 p=0.786

(0.629) (0.615) (0.640) (0.658)
Flights/Month 5.182 5.150 p=0.877 5.305 p=0.571 p=0.465 5.261 p=0.706 p=0.586 p=0.837

(1.372) (1.310) (1.406) (1.328)
Fuel Load 0.417 0.422 p=0.866 0.424 p=0.831 p=0.769 0.408 p=0.956 p=0.616 p=0.589

(0.208) (0.175) (0.180) (0.185)
Eff Flight 0.322 0.322 p=0.979 0.327 p=0.778 p=0.835 0.326 p=0.789 p=0.849 p=0.942

(0.124) (0.114) (0.130) (0.130)
Eff Taxi 0.365 0.359 p=0.874 0.367 p=0.947 p=0.460 0.339 p=0.821 p=0.561 p=0.418

(0.230) (0.229) (0.222) (0.226)

Sample n=85 n=85 n=81 n=84
Notes: The table reports means and standard deviations (in parentheses) for captains in the four experimental conditions in the pre-experimental data (January 2013-January 2014), in addition
to tests of equality for each pair of groups (t-test for continuous variables, χ2 test for indicator variables). Seniority and age are continuous variables, while trainer and trusted pilot are indicator
variables. Seniority captures the captain’s ranking amongst VAA captains. Age is the captain’s age in years (in 2014). Trainer captures whether the captain trains other captains in the latest
flight techniques, and trusted pilot indicates whether the captain was included in pre-study focus groups. Plan Ramp measures the amount of fuel anticipated for the entire flight (including taxi-
out and taxi-in)—which therefore acts as a proxy for distance flown—and Actual Fuel is the actual amount of per-flight fuel realized. Engines is the average number of engines on aircraft flown.
Flights/Month is the average number of flights a captain flew in a given month in the thirteen months leading up to the study. Fuel Load, Eff Flight, and Eff Taxi represent the proportion of each
captain’s flights on which each of the three fuel-efficient behaviors targeted by the study were met in the pre-experimental period.
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Table 3
Summary Statistics: Average Attainment of Fuel Load, Efficient Flight, and

Efficient Taxi in all Time Periods

Control Treatment 1: Treatment 2: Treatment 3: All Captains
Information Targets Prosocial

Fuel Load

Before Experiment
0.421 0.428 0.434 0.414 0.424
(0.494) (0.495) (0.496) (0.493) (0.494)

5,258 obs 5,429 obs 5,070 obs 5,140 obs 20,897 obs

During Experiment
0.443 0.462 0.475 0.458 0.459
(0.497) (0.499) (0.499) (0.498) (0.498)

3,321 obs 3,330 obs 3,016 obs 3,258 obs 12,925 obs

After Experiment
0.446 0.446 0.469 0.412 0.442
(0.497) (0.497) (0.499) (0.492) (0.497)

2,140 obs 2,120 obs 1,867 obs 2,063 obs 8,190 obs

Efficient Flight

Before Experiment
0.311 0.314 0.313 0.312 0.312
(0.463) (0.464) (0.464) (0.463) (0.463)

5,258 obs 5,429 obs 5,070 obs 5,140 obs 20,897 obs

During Experiment
0.476 0.503 0.528 0.510 0.504
(0.500) (0.500) (0.499) (0.499) (0.500)

3,321 obs 3,330 obs 3,016 obs 3,258 obs 12,925 obs

After Experiment
0.548 0.521 0.536 0.525 0.533
(0.498) (0.500) (0.499) (0.499) (0.499)

2,140 obs 2,120 obs 1,867 obs 2,063 obs 8,190 obs

Efficient Taxi

Before Experiment
0.352 0.339 0.348 0.318 0.339
(0.478) (0.473) (0.476) (0.466) (0.473)

3,380 obs 3,596 obs 3,260 obs 3,341 obs 13,577 obs

During Experiment
0.507 0.588 0.622 0.590 0.575
(0.500) (0.492) (0.485) (0.492) (0.494)

2,117 obs 2,109 obs 1,864 obs 2,014 obs 8,104 obs

After Experiment
0.547 0.585 0.643 0.607 0.594
(0.498) (0.493) (0.479) (0.489) (0.489)

1,277 obs 1,201 obs 1,090 obs 1,218 obs 4,786 obs

Notes: The table reports the proportion of flights for which captains in a given group performed each of the three se-
lected behaviors. Due to random memory errors, Efficient Taxi data is unavailable for 37.0% of flights in our dataset.
This missing data is in no way systematic and therefore does not bias the results, though it moderately reduces the
power of the Efficient Taxi estimates in the subsequent analysis. Standard deviations are reported in parentheses,
which is followed by the total number of observations (flights) from which the summary statistics are calculated.
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Table 4
Treatment Effect Identification using Difference-in-Difference Regression

(1) (2) (3) (4) (5) (6)
Fuel Load Eff Flight Eff Taxi Fuel Load Eff Flight Eff Taxi

Expt 0.033** 0.132*** 0.038* 0.033** 0.132*** 0.038**
(0.014) (0.014) (0.020) (0.013) (0.013) (0.016)

Expt · Information 0.007 0.017 0.079*** 0.007 0.017 0.079***
(0.017) (0.016) (0.025) (0.015) (0.014) (0.017)

Expt · Targets 0.022 0.037** 0.096*** 0.022 0.037** 0.096***
(0.018) (0.018) (0.026) (0.015) (0.015) (0.018)

Expt · Prosocial 0.025 0.047*** 0.088*** 0.025* 0.047*** 0.088***
(0.016) (0.017) (0.026) (0.015) (0.014) (0.018)

Observations 33,822 33,822 21,681 33,822 33,822 21,681
# of Captains 335 335 335 335 335 335
Controls Yes Yes Yes Yes Yes Yes

Standard Errors:
Clustered Yes Yes Yes
Newey-West Yes Yes Yes

Notes: The table shows the results of a panel difference-in-difference regression specification with captain fixed effects and
both clustered and Newey-West standard errors (lag=1), controlling for linear trends in the data. The regressions compare
pre-experiment behavior (January 2013-January 2014) to behavior during the experiment (“Expt”; February 2014-September
2014). The dependent variables in the regressions are dummies capturing whether the fuel-efficient behavior is performed,
and since predicted values are not constrained between 0 and 1, we do not report a constant and instead focus on treatment
effects. As such, the coefficients indicate the increase in the proportion of flights beyond the control group for which the
behavior of interest is successfully performed. Robust errors are clustered at the captain level. Controls include weather on
departure and arrival, number of engines on the aircraft, aircraft type, ports of departure and arrival, aircraft maintenance,
captains’ contracted hours, and whether the captain has completed an annual training. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table 5
Persistence: Treatment Effect Identification Post Experiment

Pre- vs. Post-experiment During vs. Post-experiment
(1) (2) (3) (4) (5) (6)

Fuel Load Eff Flight Eff Taxi Fuel Load Eff Flight Eff Taxi

Post 0.043** 0.239*** -0.009 0.013 0.007 -0.019
(0.021) (0.022) (0.030) (0.018) (0.019) (0.025)

Post · Information -0.004 -0.038* 0.034 -0.016 -0.046** -0.035
(0.020) (0.023) (0.032) (0.020) (0.022) (0.029)

Post · Targets 0.010 -0.030 0.078** -0.007 -0.063*** -0.032
(0.020) (0.025) (0.030) (0.019) (0.023) (0.027)

Post · Prosocial -0.030 -0.030 0.062** -0.047** -0.052** -0.021
(0.021) (0.023) (0.027) (0.021) (0.022) (0.028)

Observations 29,087 29,087 18,363 21,115 21,115 12,890
# of Captains 335 335 335 335 335 335
Controls Yes Yes Yes Yes Yes Yes

Notes: The table shows the results of two difference-in-difference regression specifications with captain fixed effects com-
paring pre-experimental behavior (January 2013-January 2014) to post-experimental behavior (“Post”: October 2014-
March 2015). The dependent variables in the regressions are dummies capturing whether the fuel-efficient behavior is
performed, and since predicted values are not constrained between 0 and 1, we do not report a constant and instead focus
on treatment effects. As such, the coefficients indicate the increase in the proportion of flights beyond the control group
for which the behavior of interest is successfully performed. We provide conventional robust standard errors clustered at
the captain level. Total flight observations are provided. Controls include weather on departure and arrival, number of
engines on the aircraft, aircraft type, ports of departure and arrival, aircraft maintenance, captains’ contracted hours, and
whether the captain has completed an annual training. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table 6
Data-Supported Estimates of Overall Fuel Savings (in tons)

(1) (2) (3) (4)
Flight Plan Savings Fuel Load Efficient Flight Efficient Taxi

Monitoring 1,647.79*** 586.70*** 850.43*** 56.52***
(207.54) (97.71) (140.27) (16.87)

Information 2,152.39*** 494.45*** 932.59*** 69.11***
(215.51) (95.56) (121.46) (15.15)

Targets 1,994.37*** 574.66*** 1089.04*** 66.05***
(194.10) (85.24) (110.89) (16.15)

Prosocial 1,973.99*** 680.33*** 1074.74*** 38.29**
(206.15) (96.29) (119.55) (15.03)

Fuel Savings from
Behavior Change - 2,336.14 3,946.80 229.96

Total Fuel Savings 7,768.54 6,512.90
Notes: The table presents estimates of total fuel savings by treatment group. Savings are based on regression coefficients from a
difference-in-difference specification with captain fixed effects and Newey-West standard errors (lag=1) comparing pre-experimental
behavior (January 2013-January 2014) to behavior during the experiment (February 2014-September 2014). The dependent variable
in column (1) is the deviation between actual fuel used and predicted fuel use in the flight plan. The dependent variable in columns
(2)-(4) is the deviation from ideal fuel usage in each of the three flight periods as described in the text. We calculate fuel savings
with an intent-to-treat approach where the regression coefficient of each group (i.e., the group’s average treatment effect) and the
average monitoring effect (i.e., the coefficient of the experimental-period indicator) are multiplied by the number of flights in each
group (3,321; 3,330; 3,016; and 3,258, respectively). In other words, we assume that the monitoring effect is proportional to the
number of flights. The per-flight fuel savings estimates corresponding to column (1) for the control, information, targets, and proso-
cial incentives groups—controlling for a linear time trend—are (respectively): 496.17 (p<0.01), 150.19 (p<0.05), 165.09 (p<0.05),
and 109.72 (p=0.10). Controls include weather on departure and arrival, number of engines on the aircraft, aircraft type, ports of
departure and arrival, aircraft maintenance, captains’ contracted hours, and whether the captain has completed an annual training.
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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A Theoretical Model

A.1 Model Setup
We consider a static choice problem that determines a captain’s chosen effort on the job in a
certain period. In our model, we assume that captains, who have vast flying experience, are
at an equilibrium fuel usage with respect to their wealth, experience, effort, and concerns
for safety, the environment, and company profitability.41

A captain faces the following additively separable utility function:

U(w, s, e, f, g) = u(w, e, g) + a · v(d(e) · g, g0, G−i) + y(s, e, f)− c(e)− s(e) (1)

where u(·) is utility from monetary wealth, v(·) is utility from giving to charity (pro-social
behavior), y(·) is utility from job performance, c(·) is disutility from exerting effort, and
s(·) describes disutility from social pressure. Effort is chosen for all three flight tasks, j,
i.e., Fuel Load, Efficient Flight, and Efficient Taxi. Captains observe their effort perfectly.
They also receive a noisy signal of fuel usage fit + εit = f̄it. fit describes the estimated
fuel usage by captain i for flight t which depends on the chosen effort for the fuel-efficient
activities. f̄it is actual fuel use, observed ex post by the airline, which also includes a random
component.42 Furthermore, each captain has an ideal fuel usage fI , which is based on her
own experience and environmental and firm profit preferences. By revealed preference the
equilibrium pre-study fuel usage is fI = f̄ .

Experimental treatments in this study alter three model parameters. First, receiving
information on fuel use, i = 1(information), removes the noisiness of the fuel signal, i.e.,
fit + (1− i)εit = f̄it. Second, provision of a target, r = 1(target), changes the captain’s ideal
fuel usage, fI , because the employer exogenously imposes a target level. Then, fI = fT if
r = 1 where fT reflects the signaled optimal usage from the point of view of the airline.
Third, in the pro-social behavior treatment a donation, g, is made by the airline in the name
of the captain. This donation is conditional on meeting the target which has a probability
of d(e) in this treatment.43 In all other treatments, reaching particular fuel use levels does
not lead to donations, i.e., d(e) = 0. Parameters and elements of the utility function are
explained in more detail below.

(Dis)utility from social pressure. In the spirit of DellaVigna et al. (2012, “DLM” here-
after) and Bénabou and Tirole (2006), we assume that captains are either affected by social
pressure due to their actions being observed or exhibit some sort of social signaling in which

41In a MIT survey, commercial airline captains expressed a concern over fuel usage and fuel cost, both for en-
vironmental reasons and company profitability. To become an airline captain requires many years of training and
experience within an airline; if a captain loses her job with one airline and seeks employment in another, she loses her
prior seniority and must work for many years to reinstate it. Thus, for the sake of their own job security, captains
care about minimizing fuel costs.

42Due to the vast experience of captains, we assume E(εit) = 0, i.e., captains predict fuel usage correctly, on
average.

43Captains can directly influence the probability with their effort. That is, captains can be certain that they do
not meet a target if they put in little effort, and they can be certain that they have achieved the target if they put
in sufficient effort.
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they want to appear to be good employees. In this framework, captains are aware of an op-
timal, social effort level, esocial. Because exerting effort is costly to the captain and because
her actions are imperfectly observed with probability πobserved < 1, generally e > esocial.44
In this study, captains in both the control group and treatment group are made aware that
their actions are monitored and data on their effort are used for an internal and academic
study. Consequently, we expect the probability of detection of deviations from the social
effort level to increase for all participants in the study relative to the pre-study period, i.e.,
πobservedstudy > πobservedpre . We parameterize social pressure as follows:

s(e) = [πobserved · (esocial − e) + (1− πobserved) · 0] · 1(e < esocial)

Social pressure decreases utility if the chosen effort level is below the socially optimal
effort level of the captain. This disutility is increasing in the distance from the optimal
effort level and in the probability of these actions being observed by the airline. The second
term is an indicator function implying that unobserved deviations do not lead to disutility..
For agents that exert more effort than esocial, s(e) simply drops out of their utility function.
Consequently, captains can directly impact the level of disutility by exerting more (costly)
effort.

Note that s(e) enters the utility of every captain below the social effort level, regardless of
treatment assignment. If social pressure is important, even control captains should respond
to this increased cost of low effort.45 Because s(e) is orthogonal to treatment, we omit it in
the following discussion and in the derivation of comparative statics.46

Utility from wealth. Similar to DLM, for wealth w, charitable giving from the airline g
for meeting the target (if applicable), and other charitable giving g0, u is defined as follows:

u(w, e, g) = u(w − g0(d(e) · g) + ã · d(e) · g)

where ã =


0 if a < 0
a if 0 ≤ a ≤ 1
1 if a > 1

Private consumption is an individual’s wealth minus the amount given to charity from
that person’s wealth (i.e., not from this study). However, to ensure that u is continuously
differentiable, we need to account for the effect of charitable donations resulting from our
treatments on utility from private consumption. To capture this effect, we multiply the
individual’s expected donation, d(e)·g, by a function of a—a parameter capturing preferences
for giving—which we call ã. As in DLM, the parameter a is non-negative in the case of pure

44It is plausible to argue that effort is perfectly observed in the aviation industry with modern technology. However,
captains might not expect these data to be analyzed on a regular basis.

45Alternatively, we could interpret esocial as a level of effort induced by the researcher, leading to experimenter-
demand effects. Put differently, captains in the study could think they are expected to increase effort and not doing
so imposes utility costs on them.

46Social pressure is additively separable from other utility elements in a linear model. Consequently, it does not
affect the sign of comparative statics derived below and, if interactions are present, only attenuates treatment effect
estimates.
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or impure altruism and negative in the case of spite47, and ã is simply a truncated at 0 and
1.

The reasons for creating such boundaries on the term capturing preferences for giving are
twofold. First, an individual with spiteful preferences (a < 0) does not get less utility from
private consumption when she donates to charity than when she does not donate to charity;
therefore, ã is censored from below at 0. Second, an individual with pure or impure altruistic
preferences will get additional utility from her private consumption by giving to charity
through our treatment because it corresponds to an outward shift in the budget constraint
in the dimension of giving to the chosen charity. However, ã is censored from above at 1
because an individual will experience weakly more utility from increases in w than from
giving to the chosen charity (i.e., ∂u

∂w
≥ ∂u

∂g
). This relation holds since increases in w shift the

budget constraint outward in all dimensions—including the charitable giving dimension—so
these must be weakly preferred to shifts in only one dimension. This stipulation is important
to assume differentiability in u in a standard expected utility framework, as in DLM.

Please note that the amount an individual gives to other charities will be related to the
amount that she gives to charity in the context of this study. Captains will smooth their
consumption for giving. If a captain normally gives $100 to charity each year and this year
she gives $10 through the context of the study, we would expect her total giving to be
between $100 and $110, or g0 + g ∈ [100, 110]. The realization of the sum depends on the
value of a and whether a stems from pure altruism, impure altruism, or spite. We should
expect that an individual who has a negative a value does not donate to charity outside of
the context of this study since donating to charity decreases that individual’s utility.

Utility from charitable giving. The v term is also adapted from DLM and follows the
same properties for each type of individual (pure or impure altruistic and spiteful). The
main difference between the v term in this study and that in DLM is that in this study,
not everyone has the opportunity to donate to charity (i.e., d(e) > 0 for only one treatment
group). We also assume that v is separable in its parameters, as follows:

v(d(e) · g, g0, G−i) = v1(d(e) · g,G−i) + v2(θg0, G−i)
where θ is the cost of giving through channels other than the study and G−i is total giving by
other individuals. In this specification, v1 represents utility from giving in the study context
and v2 represents utility from giving from one’s personal wealth. Note that v1(0, G−i) = 0
since if d(e) = 0, then a captain is not able to donate to the charity through the context
of the study, so v1 should not affect the utility function (similar to the spite case). Based
on the arguments made above with respect to consumption smoothing, v|d=0 ≤ v|d=p, 0 =
v1|d=0 ≤ v1|d=p, v2|d=0 ≥ v2|d=p. That is, utility from giving is at least as high for those
captains for whom d(e) = p as it is for those captains for whom d(e) = 0, which follows from
our assumption that giving in the study context can only decrease giving from one’s own
wealth or not affect it at all. Finally, since ∂p

∂e
> 0, we have ∂v

∂e
≥ 0.

47As defined in Andreoni (1989, 1990), pure and impure altruism capture two possible motivations for giving. The
first stems from a preference solely for provision of the public good, so that an individual’s donations are entirely
crowded out by donations from other sources. Impure altruism, on the other hand, refers to the phenomenon whereby
individuals receive direct utility from the act of giving itself, i.e., through “warm glow”. Spite, as defined in DLM,
exists when an individual gets disutility from donating to the charity.
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In the case of pure altruism, an individual should get the same utility from giving to
charity from her personal wealth as from giving to charity through the context of the study,
since the benefit to the charity is identical. In this sense, v can be thought to represent
the charity’s production function. In the case of impure altruism, an individual should also
get the same utility from donating to charity through her personal wealth as she does from
donating through the context of the study because the amount donated on her behalf is the
same. Lastly, in the case of spite, g0 = 0 since giving to charity decreases utility and so those
individuals will not give to charity independently of the study. Note, v(0) = 0 because if a
person does not give to charity in person then her utility from giving to charity in person is
0.

Utility from job performance. Since captains care about fuel efficiency, and since imposing
exogenous targets on performance affects a captain’s perception of how well she is doing her
job, we include a parameter y capturing job performance.48 We assume y is separable in
safety (s) and fuel (f) because changes in fuel as a result of the study do not affect safety
levels, as argued in our assumption above. A captain whose performance exceeds her target
will achieve higher utility under this parameter than a captain who does not achieve her
target. Similarly, a captain will experience less (more) utility the further below (above)
the target is her performance. We therefore incorporate job performance into the model as
follows:

y(s, e, f) = y1(s) + y2(e, f) = y1(s) + y2(−f̄ | − fI)

where

y2(−f̄ | − fI) = y2m(−f̄) + y2n(−f̄ | − fI)

and

y2n(−f̄ | − fI) = r · µ(y2m(−f̄)− y2m(−fI))

Here, y2 is defined as in Köszegi and Rabin (2006, KR hereafter). We denote the components
of y2 “m” and “n” to mirror the notation in KR. As in KR, m represents the “consumption
utility” and n represents the “gain-loss utility.” These terms are separable across dimensions.
Finally, µ is the “universal gain-loss function” and has the associate properties outlined in
KR. To be clear, we assume that captains who receive exogenous targets perceive these
targets as reference points for their own attainment.

Note that captains get utility from using less fuel ∂y2
∂f
≤ 0 and, conditional on receiving

a reference point, get utility (disutility) from performing above (below) the target, which
increases with distance from the target according to µ. We assume µ is linear and µ(x) = ηx
if x > 0 and µ = ηλx if x ≤ 0 for η > 0, λ > 1, in accordance with theories of loss aversion.
Moreover, following naturally from our definition of µ, we assume y(x) = x. If a captain

48Evidence indicates that influencing job performance positively influences job satisfaction (or utility), whether
through increased self-esteem or perceived managerial support for autonomous decision-making (Christen et al.,
2006; Pugno and Depedri, 2009).
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does not receive a reference point, her utility does not comprise gain-loss utility, so for these
individuals y2 = y2m. That is, if r = 0, captains do not receive information regarding ideal
performance with respect to fuel efficiency, so their job performance parameter depends
solely on fuel consumption.49

Additionally, based on industry standards and emphasis on safety—as well as the design
of the treatments—we assume that captains’ job performance utility from flying safely is
constant across treatments, therefore:

∂y

∂s
= S ≥ 0

(Dis)utility from effort. Finally, c represents the cost of effort. Importantly, the individual

cost functions for each fuel-efficient task are allowed to differ to convey that various tasks
have different costs associated with them. The cost structure is a function of the difficulty
of the task itself (e.g., it may be easier to turn off one engine after landing than to have
an efficient flight for several hours) and resistance due to previous habit formation (e.g.,
captains who for many years have not properly performed the Zero Weight Fuel calculation
may find it difficult or bothersome to begin doing so). Additionally, the costs for each task
are separable since the tasks are done independently. Therefore,

c(e) =
∑
j

cj(ej)

For a captain to decrease her fuel use, she must also increase her effort, i.e., ∂f
∂e
< 0. Note

that c(e) is subtracted in the utility equation, so ∂U
∂c
< 0, ∂c

∂e
> 0. Based on interviews with

captains, the cost of effort increases at an increasing rate. Defining the cost of effort as a
quadratic function of effort implies that the cost of effort increases with the amount of effort
exerted (i.e., ∂2c

∂e2 > 0).

A.2 Model Predictions
Captains will choose how much effort to exert based on the treatments (information, targets,
prosocial incentives) as in the moral hazard model (see Holmström, 1979). The model is
simplified because agents are current employees whose base salaries are not affected by the
study. The treatments do affect job satisfaction and charitable giving, however. Different
treatments represent different contracts.

We now define V (−f) to be the utility of the firm (the principal) from the perspective of
the employee (the agent) as a function of firm costs, i.e., fuel costs. V is highly related to y
since an employee’s job satisfaction is linked to the well-being of the firm itself. We assume
V is independent of treatment status, τ , because the marginal benefit and marginal cost to
the firm do not depend directly on treatment, but rather on the amount of fuel used (i.e.,
for the same level of fuel but two different treatments, V is the same). Additionally, salaries
are fixed and donations to charity are paid by an outside donor.

49To be clear, given that our reference point is exogenously imposed, one cannot clearly assess whether the individual
captain is better off in the targets group than in another group.
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We further define U(e, τ) to be the utility function under treatment τ with effort e and Ū
as a captain’s outside option.50 Let ė be the pre-study amount of effort and ë be the chosen
effort under τ . Note that the profit-maximizing principal (VAA) wants to design contracts
(treatments) that induce the optimal level of effort from the point of view of the principal.
In this case, the principal observes both the outcome (fuel usage) and the effort by the agent,
but is restricted from making contractual changes that introduce monetary compensation
based on effort levels.

Therefore, the problem becomes:

max
e,g0

E[V (−f)]

s.t. E[U(w, s, ë, fI , g, τ)] ≥ Ū

and ë ∈ argmax
ë′

E[U(w, s, ë′, fI , g, τ)]

The first-order condition is V ′(−f)
U ′(w,s,ë,fI ,g,τ) = λ and so U ′(w, s, ë, fI , g, τ) = λ · V ′(−f).

Captains choose the effort level that satisfies the marginal conditions.

Proposition 1. Captains in the control group will change their behavior if they are influenced
by social pressure. That is, they will generally increase effort if their effort level is below the
social effort level.

Proof: We argued above that scrutiny due to the intervention is likely to (weakly) increase
the probability of detection of a sub-optimal effort level (πobserved) or the perceived socially
optimal level of effort (esocial), or both. Both effects increase the social cost component
of the utility function for captains in all treatment cells, including the control group. Put
differently, for a given level of effort ē < esocial, the intervention increases the marginal social
cost of exerting low effort ∂U

∂s
|ē. Consequently, captains respond to these new marginal

conditions and increase their effort if they are below the (perceived) socially optimal level.51

Proposition 2. Information will cause captains to increase or decrease their effort and
thereby increase or decrease fuel usage respectively or choose the outside option, depending
on the realization of the difference between estimated (fit) and actual (f̄it) fuel usage (i.e.,
the value of the parameter εit).

Proof: Let the pre-study period be t = 0 and the study period be t = 1.
Assume in period t = 0, εi0 < 0, then fi0 > f̄i0, so that when captains receive information

in t = 1, they learn that y2m(−f̄) > E[y2m(−f̄)]. In other words, they were more fuel-efficient
in t = 0 than they expected to be. Therefore, if they provide the same level of effort in period
t = 1, they will experience a level of utility greater than their pre-study equilibrium. They
pay the same cost of effort but receive more utility from job performance. They will then

50Our notation differs slightly from Holmström (1979) since the cost of the action is embedded in the utility function
of the agent.

51Because of orthogonality to treatment, the condition of being observed simply increases baseline effort. Further-
more, because utility is additively separable, qualitative findings from the subsequent comparative statics analysis
are unchanged. If there are interactions between social pressure and the treatments, these interactions just attenuate
point estimates because all treatments are designed to increase effort against a now greater baseline.
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weakly decrease their chosen level of effort. How much depends on the functional form
of the y and c functions and their pre-study effort level. Captains in the information or
targets treatments—where wealth and the charities’ production functions are independent
of effort—will not decrease their effort if y is steeper than c around their chosen values.
This scenario is possible since there is a random shock of εi0 to their location of −f̄ and
we are agnostic about the functional form of y. Without the shock, they would not be in
equilibrium if y were steeper with respect to effort than c at the chosen level of effort because
they could increase effort and pay a slightly higher cost but get much more utility from job
performance. They will not choose their outside option since if

E[U(w, s, ė, fI , g, τ = “pre-study, no treatment”)] ≥ Ū ,

then

E[U(w, s, ë, fI , g, τ = “information”)] ≥ Ū .

In other words, they can hold y constant and decrease effort and thereby increase U ,
while Ū is held fixed.

Now assume εi0 > 0, then fi0 < f̄i0 and so when captains receive information, they learn
that y2m(−f̄) < E[y2m(−f̄)], i.e., they were less fuel-efficient than expected. Therefore, if
they provide the same level of effort in period t = 1, they will receive below their pre-study
equilibrium amount of utility. They pay the same cost of effort but receive less utility from
job performance. They will weakly increase their effort if the change in y is more than the
change in c, which depends on the functional form of these functions and their pre-study
effort level. They will not increase their effort if c is steeper than y for similar reasons
described in the previous case. They will choose their outside option if the change in y leads
to E[U(w, s, ë, fI , g, τ = “information”)] < Ū , which could occur if increases in effort lead
to larger increases in c than in y. Whether or not it occurs also depends on the captains’
outside option.

Finally, assume εi0 = 0. Then captains are at their equilibrium with y2m(−f̄) = y2m(−fI)
and do not change their effort.

Proposition 3. Targets set above pre-study use will cause captains to weakly increase their
effort or choose their outside option.52

Proof: Since the target is set above pre-study use (i.e., captains are meeting the targets
fewer times than is optimal from the perspective of the firm), upon receiving a target, the
captains learn f > fT and get reference-dependent loss utility equal to y2n < 0. Therefore,
captains are strictly below their equilibrium in effort and strictly above in fuel usage since
in the pre-study period y2n = 0 from the assumption that fI = f̄ .

Captains will not increase their effort if the increased cost of effort is larger than the gain
from the associated decrease in fuel usage in the job performance function. Captains will
increase their effort if the gain from the associated decrease in fuel usage is more than the
cost of effort. This depends on the functional form of these functions, the value of µ, and

52All targets were set above the pre-study attainment level, so this is the only case we consider.
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the captains’ initial values during the pre-study period. Their chosen level of effort comes
from the first-order condition with τ = “receive targets”.

Since captains experience a negative utility shock from receiving a target, they will choose
the outside option if E[U(w, s, ë, fI , g, τ = “receive targets”)] ≤ Ū .

Proposition 4. Donations made to charity for meeting targets will weakly increase effort if
captains’ altruism is strictly positive and the donations do not affect their effort otherwise.

Proof: Let Vc(d(e), g) be the production function of the charity. Note that in the case of
pure altruism Vc = v1, as defined in the previous section. ∀d(e) · g ≥ 0, we have Vc > 0 and
Vc = 0 if and only if d(e) · g = 0. Then, captains solve the following optimization problem:

max
e,g0

E[V (−f) + ã · Vc]

s.t. E[U(w, s, ë, fI , g, τ)] ≥ Ū

and ë ∈ argmax
ë′

E[w, s, ë′, fI , g, τ)]

with first-order condition V ′(−f)+ã·V ′c
U ′(w,s,ë,f,g,τ) = λ. If a captain has zero altruism, i.e., ã = 0, then

this equation reduces to the original and effort does not increase above the effect described
in Proposition 1. If ã > 0, then the numerator of the first-order condition is weakly larger
than the control case. It is strictly larger if d > 0. Captains with strictly positive altruism
may choose an effort level corresponding to d = 0 if the additional cost of increased effort
required for meeting the target is more than the gain in utility from donating to charity.
The probability of this outcome occurring is decreasing in the level of altruism.

Since λ is a constant, increases in the sum of the production functions of the firm and
charity cause increases in effort, ė < ë.

Proposition 5. Captains in the targets and prosocial conditions will choose to increase their
effort the most in tasks for which the targets are easiest to meet.

Proof: Since the firm sets the targets and donations exogenously53, the utility for meeting
a target is constant across tasks. The donation to charity is the same across tasks as ex-
ogenously determined, and since the targets are also exogenously determined, the captains
believe that the firm values them all equally by revealed preference. If the firm did not
value them equally, then it would not offer the same reward. However, the cost function is
not constant across tasks for reasons described earlier, which implies that the captains will
choose to increase their effort on tasks for which targets are easiest to meet.54 Within our
context, the least effortful behavior to attain is Efficient Taxi, followed by Fuel Load, then
Efficient Flight. The determination of this ordering is based on discussions with many airline
captains and the trusted pilot group.

53Note that the “firm” here refers to both VAA and the academic researchers, who jointly made most decisions
with respect to experimental design.

54Our theory and interventions are rooted in Holmström’s (1979) “Informativeness Principle”, which states that
any accessible information about an agent’s effort should be used in the design and enforcement of optimal contracts.
Our interventions are not aimed at the efficient allocation of effort across these tasks—as proposed in Holmström and
Milgrom (1991) and Baker (1992)—since we assume our three behaviors are not substitutable (i.e., since they occur
during different phases of flight). We acknowledge the possibility that additional fuel-efficient behaviors exist that
we do not measure that may be fully or partially neglected due to our treatments.
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B Map

Figure 5
Global destinations of VAA

11



C Examples of Treatment Groups

Figure A1
Treatment Group 1: Information

 

 
We will continue to keep you updated on your monthly performance for the next X months, John. 

 
Please see reverse side for further details of the three behaviours.  

 
Questions?  We are here to help!  Please email us at project.uoc@fly.virgin.com. 

 

	  
 
 
 

Fuel and carbon efficiency report for Capt. John Smith 
 

Below is your monthly fuel and carbon efficiency report for Month 2014 
 
 

 

1. ZERO FUEL WEIGHT 
 
Proportion of flights for which 
the ZFW calculation was 
completed and fuel load 
adjusted as necessary 
 

RESULT: XX% of flights 

2. EFFICIENT FLIGHT 
 
Proportion of flights for which 
actual fuel use is less than 
planned fuel use (e.g. 
optimised speed, altitude etc) 

 
RESULT: XX% of flights 

3. REDUCED ENGINE TAXY IN 
 
Proportion of flights for which 
at least one engine was shut 
off during taxy in 
 
 

RESULT: XX% of flights 

All data gathered during this study will remain anonymous and confidential.  Safety remains the absolute 
and overriding priority.  This study will be carried out within Virgin’s existing and highly robust safety 
standards, using our existing fuel procedures and policies. Captains retain full authority, as they always 
have done in VAA, to make decisions based on their professional judgment and experience.	  
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Figure A2
Treatment Group 2: Targets

 

WHAT WAS YOUR OVERALL OUTCOME? 
 

You achieved X of your 3 targets last month. 
   

 WELL DONE! We will continue to keep you updated on your monthly performance  
for the next X months, John. 

 
Please continue to fly efficiently next month to achieve your targets. 

 
Please see reverse side for further details of the three behaviours.  

 
Questions?  We are here to help!  Please email us at project.uoc@fly.virgin.com. 

 

	  
 
 
 

Fuel and carbon efficiency report for Capt. John Smith 
 

Below is your monthly fuel and carbon efficiency report for Month 2014 
 
 

 
  

1. ZERO FUEL WEIGHT 
 
Proportion of flights for which 
the ZFW calculation was 
completed and fuel load 
adjusted as necessary 
 

TARGET: XX% of flights 
 

RESULT: XX% of flights 
 

You ACHIEVED/MISSED 
your target. 

2. EFFICIENT FLIGHT 
 
Proportion of flights for which 
actual fuel use is less than 
planned fuel use (e.g. 
optimised speed, altitude etc) 
 

TARGET: XX% of flights 
 

RESULT: XX% of flights 
 

You ACHIEVED/MISSED 
your target. 

3. REDUCED ENGINE TAXY IN 
 
Proportion of flights for which 
at least one engine was shut 
off during taxy in 
 
 

TARGET: XX% of flights 
 

RESULT: XX% of flights 
 

You ACHIEVED/MISSED 
your target. 

All data gathered during this study will remain anonymous and confidential.  Safety remains the absolute 
and overriding priority.  This study will be carried out within Virgin’s existing and highly robust safety 
standards, using our existing fuel procedures and policies. Captains retain full authority, as they always 
have done in VAA, to make decisions based on their professional judgment and experience.	  
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Figure A3
Treatment Group 3: Prosocial Incentives

 

WHAT WAS YOUR OVERALL OUTCOME? 
 

 Due to your fuel and carbon efficient decision making last month, 
you achieved 2 of your 3 targets and secured £20 of a possible £30 

 for your chosen charity, Charity Name. 
 

WELL DONE! For the next 7 months, you still have the ability to donate £210 to Charity 
Name.  Please continue to fly efficiently next month to achieve your targets so your 

charity does not lose out. 
 

Please see reverse side for further details of the three behaviours.  
 

Questions?  We are here to help!  Please email us at project.uoc@fly.virgin.com. 
 

	  
 
 

Fuel and carbon efficiency report for Capt. John Smith  
 

Below is your monthly fuel and carbon efficiency report for February 2014 
 
 

 
  

1. ZERO FUEL WEIGHT 
 
Proportion of flights for which 
the ZFW calculation was 
completed and fuel load 
adjusted as necessary 
 

TARGET: 75% of flights 
 

RESULT: 0% of flights 
 

You MISSED  your target 
and missed out on £10 in 

donations to Charity Name. 
 

2. EFFICIENT FLIGHT 
 
Proportion of flights for which 
actual fuel use is less than 
planned fuel use (e.g. 
optimised speed, altitude etc) 
 

TARGET: 25% of flights 
 

RESULT: 75% of flights 
 
You ACHIEVED your target 

and earned £10 in 
donations to Charity Name. 

 

3. REDUCED ENGINE TAXY IN 
 
Proportion of flights for which 
at least one engine was shut 
off during taxy in 
 
 

TARGET: 25% of flights 
 

RESULT: 25% of flights 
 
You ACHIEVED your target 

and earned £10 in 
donations to Charity Name. 
 

All data gathered during this study will remain anonymous and confidential.  Safety remains the absolute 
and overriding priority.  This study will be carried out within Virgin’s existing and highly robust safety 
standards, using our existing fuel procedures and policies. Captains retain full authority, as they always 
have done in VAA, to make decisions based on their professional judgment and experience.	  
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Figure A4
All Treatment Groups: Reverse Side of Report

 

THE THREE BEHAVIOURS WE ARE MEASURING 
 
 

Behaviour 1: Zero Fuel Weight Adjustment (ZFW) - Pre Flight 

This measure compares Actual Ramp against Plan Ramp adjusted for changes in ZFW.  
It captures whether a double iteration adjustment has been implemented for ZFW in line 
with Plan Burn Adjustment and any further amendments to flight plan fuel that have 
been entered into ACARS. This behaviour has a tolerance of 200kg, which ensures that 
rounding in the fuel request / loading procedure will not adversely affect the result.   
 
 
Behaviour 2: Efficient Flight (EF) - During Flight 

This measure examines the actual fuel burn per minute compared against the expected 
fuel burn per minute from OFF to ON (expected fuel burn is Plan Trip adjusted for 
ZFW).  It highlights pilot technique (e.g. optimum settings are realised, optimum levels 
are sought, speed is optimised, etc.). 
 
 
Behaviour 3: Reduced Engine Taxy In (RETI) - Post Flight 

This measure observes if an engine has been shut down during taxy in. RETI is 
considered to have taken place if one engine burns less than 70% of the average of 
other engines during taxy in. If taxy in is shorter than the cool down period required, the 
flight is omitted, as RETI was not possible. 

 

We hope the above information is beneficial to you. If you require more information 
about any of the behaviours, please email us at project.uoc@fly.virgin.com. 
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D Randomization Strategy
Procedure: We conducted the randomization in four steps using panel flight-level data for
September through November of 2013.

• Step 1: Identify eligible population. All captains who were anticipated to be
active during the study period were eligible for the randomization (N=340).

– Note: Of these captains, two had been previously on long-term sick leave and were
anticipated to possibly come back during the study period, two went on long-term
sick leave between November 2013 and early January 2014 (prior to sending out
study communications), and one retired in December 2013, resulting in a total of
335 captains ultimately taking part in the study.

– We control for this ‘attrition’ in our analysis, and results are robust to exclusion
of the quads to which these five captains had been allocated.

• Step 2: Generate quadruplets. Our data contained information for each of the
match variables (i.e. number of engines on the aircraft, number of flights flown by
the captain each month, and the three targeted fuel-relevant behaviors). These match
variables were selected as they were either determinants of fuel use in the data used for
randomization (September-November 2013) or were outcome variables of interest. The
340 captains identified in Step 1 were allocated across 85 quadruplets within which
these variables took on as close to identical values as possible.

• Step 3: Randomize within quadruplets. Within each quadruplet, one captain
was randomly selected for each of the four conditions: Control, Information, Targets,
and Prosocial Incentives.

• Step 4: Check for balance. Once each captain was assigned to an experimental con-
dition, we checked to make sure that the means (numerical variables) and frequencies
(categorical variables) were not statistically significantly different between conditions.
For every pairing of study groups, we ran a t-test for each numerical balance variable
and a χ2 test for each of the categorical balance variables.

Match variables:

1. Average flights flown per month (categorical: 0-2, 2-4, 4-6, 6-8, 8-10)

2. Number of engines on aircraft flown (binary: all four-engine or not; 51% of captains
had flown only four-engine aircraft)

3. Proportion of flights for which zero fuel weight was conducted and fuel load was ad-
justed within 200kg of the correct fuel uptake
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4. Proportion of flights for which actual fuel burned in flight was less than predicted fuel
burn in the flight plan

5. Proportion of flights for which at least one engine was turned off during taxi-in

Balance Check Variables:

• Gender

• Seniority

• Age

• Trainer

• Trusted pilot

• Planned ramp fuel (proxy for flight distance)

• Number of flights

• Above average planned ramp fuel (binary)

• Above average number of engines

• Above average flights per month

• Fuel Load

• Efficient Flight

• Efficient Taxi

Note that we focused on behavior change as opposed to fuel use in the randomization
and in our analysis because we targeted captains’ behavior in the interventions. We did not
directly target captains’ fuel use since it is anecdotally very difficult for captains to map
their behaviors to their fuel use on a given flight (as experimentally demonstrated in the
context of residential energy use; e.g., see Jessoe and Rapson, 2014), and behavioral inputs
are more readily accessible than outputs. We therefore performed all power calculations and
randomization based on the three behavioral outcome variables, and we provide fuel savings
estimates as exploratory analysis to glean insights on resulting fuel savings.

17



E Additional Tables and Figures

Table A1
T-tests (p-values) of Difference in Pre-Experimental Behavioral Trends

Fuel Load Efficient Flight Efficient Taxi

Monitoring Info Targets Monitoring Info Targets Monitoring Info Targets

Info 0.405 0.351 0.417
Targets 0.089 0.447 0.346 0.913 0.485 0.138
Prosocial 0.250 0.777 0.634 0.324 0.082 0.066 0.522 0.147 0.938

Notes: For each fuel-related behavior and for each group, we regress the behavior on the time trend and controls in our
main regression. The table presents three t-test matrices that provide the p-value for each comparison of trend coeffi-
cients derived from the aforementioned regressions.

Table A2
T-tests (p-values) of Difference
in Pre-Experimental Fuel Use

Trends

Monitoring Info Targets

Info 0.386
Targets 0.899 0.471
Prosocial 0.281 0.739 0.346

Notes: For each experimental group, we
regress flight-level fuel use on the time trend
and controls in our main regression. The table
presents a t-test matrix that provides the p-
value for each comparison of trend coefficients
derived from the aforementioned regressions.
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Table A3
Treatment Effect Identification using

Difference-in-Difference Regression (Controlling for
Attrition)

(1) (2) (3)
Fuel Load Eff Flight Eff Taxi

Expt 0.034* 0.132*** 0.037*
(0.014) (0.013) (0.017)

Expt · Information -0.001 0.016 0.079***
(0.015) (0.015) (0.018)

Expt · Targets 0.021 0.037* 0.094***
(0.015) (0.015) (0.019)

Expt · Prosocial 0.029 0.051** 0.093***
(0.015) (0.015) (0.018)

Observations 32,310 32,310 20,747
# of Captains 335 335 335
Controls Yes Yes Yes

Notes: The table shows the results of a panel difference-in-difference
regression specification with captain fixed effects and Newey-West stan-
dard errors (lag=1), controlling for linear trends in the data and exclud-
ing the quadruplets of captains who attrited. The regressions compare
pre-experiment behavior (January 2013-January 2014) to behavior dur-
ing the experiment (“Expt”: February 2014-September 2014). The de-
pendent variables in the regressions are dummies capturing whether the
fuel-efficient behavior is performed, and since predicted values are not con-
strained between 0 and 1, we do not report a constant and instead focus
on treatment effects. As such, the coefficients indicate the increase in the
proportion of flights beyond the control group for which the behavior of
interest is successfully performed. Robust errors are clustered at the cap-
tain level. Controls include weather on departure and arrival, number of
engines on the aircraft, aircraft type, ports of departure and arrival, air-
craft maintenance, captains’ contracted hours, and whether the captain
has completed an annual training. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table A4
Specification Building: Treatment Effect Identification using Difference-in-Difference

Regression

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Fuel Load Eff Flight Eff Taxi Fuel Load Eff Flight Eff Taxi Fuel Load Eff Flight Eff Taxi

Expt 0.030*** 0.171*** 0.153*** 0.028** 0.144*** 0.038** 0.033** 0.132*** 0.038**
(0.010) (0.011) (0.013) (0.013) (0.013) (0.017) (0.013) (0.013) (0.016)

Expt · Information 0.011 0.014 0.069*** 0.011 0.013 0.066*** 0.007 0.017 0.079***
(0.015) (0.015) (0.018) (0.015) (0.015) (0.018) (0.015) (0.014) (0.017)

Expt · Targets 0.016 0.029* 0.097*** 0.016 0.028* 0.095*** 0.022 0.037** 0.096***
(0.015) (0.015) (0.019) (0.015) (0.016) (0.019) (0.015) (0.015) (0.018)

Expt · Prosocial 0.018 0.027* 0.080*** 0.018 0.026* 0.077*** 0.025* 0.047*** 0.088***
(0.015) (0.015) (0.018) (0.015) (0.015) (0.018) (0.015) (0.014) (0.018)

Observations 33,822 33,822 21,681 33,822 33,822 21,681 33,822 33,822 21,681
# of Captains 335 335 335 335 335 335 335 335 335
Controls No No No No No No Yes Yes Yes
Time trends No No No Yes Yes Yes Yes Yes Yes

Notes: The table shows the results of a panel difference-in-difference regression specification with captain fixed effects and
Newey-West standard errors (lag=1). The regressions compare pre-experiment behavior (January 2013-January 2014) to behav-
ior during the experiment (“Expt”: February 2014-September 2014). The dependent variables in the regressions are dummies
capturing whether the fuel-efficient behavior is performed, and since predicted values are not constrained between 0 and 1, we do
not report a constant and instead focus on treatment effects. As such, the coefficients indicate the increase in the proportion of
flights beyond the control group for which the behavior of interest is successfully performed. Robust errors are clustered at the
captain level. Controls include weather on departure and arrival, number of engines on the aircraft, aircraft type, ports of depar-
ture and arrival, aircraft maintenance, captains’ contracted hours, and whether the captain has completed an annual training.
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10

Table A5
Treatment Effects During the Experimental Period

(1) (2) (3) (4) (5) (6)
Fuel Load Eff Flight Eff Taxi Fuel Load Eff Flight Eff Taxi

Information 0.018 0.027 0.081** 0.021 0.023 0.078***
(0.030) (0.022) (0.034) (0.025) (0.018) (0.026)

Targets 0.032 0.051** 0.115*** 0.040 0.045** 0.110***
(0.030) (0.024) (0.035) (0.025) (0.018) (0.026)

Prosocial 0.015 0.033 0.083** 0.020 0.041** 0.093***
(0.029) (0.024) (0.037) (0.026) (0.018) (0.027)

Observations 12,925 12,925 8,104 12,925 12,925 8,104
# of Captains 335 335 335 335 335 335
Controls No No No Yes Yes Yes

Notes: The table shows the results of an OLS regression considering captains’ fuel-relevant behavior during the exper-
imental period. The dependent variables in the regressions are dummies capturing whether the fuel-efficient behavior
is performed, and since predicted values are not constrained between 0 and 1, we do not report a constant and instead
focus on treatment effects. As such, the coefficients indicate the increase in the proportion of flights beyond the con-
trol group for which the behavior of interest is successfully performed during the experimental period. Robust errors
are clustered at the captain level. Controls include weather on departure and arrival, number of engines on the air-
craft, aircraft type, ports of departure and arrival, aircraft maintenance, captains’ contracted hours, and whether the
captain has completed an annual training. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table A6
Dependence of Treatment Effect on Salience of Monthly

Feedback Report

(1) (2) (3)
Fuel Load Eff Flight Eff Taxi

Expt 0.033** 0.128*** 0.037**
(0.014) (0.013) (0.017)

Expt · Info 0.000 0.018 0.083***
(0.016) (0.015) (0.019)

Expt · Targets 0.020 0.042*** 0.096***
(0.016) (0.016) (0.020)

Expt · Prosocial 0.015 0.045*** 0.085***
(0.016) (0.015) (0.019)

Expt · Info · Salient 0.034 -0.008 -0.020
(0.028) (0.028) (0.033)

Expt · Targets · Salient 0.006 -0.027 -0.004
(0.029) (0.029) (0.034)

Expt · Prosocial · Salient 0.049* 0.007 0.014
(0.029) (0.028) (0.033)

Observations 33,822 33,822 21,681
# of Captains 335 335 335
Controls Yes Yes Yes

Notes: The table shows the results of a panel difference-in-difference regres-
sion specification with captain fixed effects and Newey-West standard errors
(lag=1), controlling for linear trends in the data. The regressions compare pre-
experiment behavior (January 2013-January 2014) to behavior during the experi-
ment (“Expt”:February 2014-September 2014). The dependent variables in the re-
gressions are dummies capturing whether the fuel-efficient behavior is performed,
and since predicted values are not constrained between 0 and 1, we do not report a
constant and instead focus on treatment effects. As such, the single interaction co-
efficients indicate the increase in the proportion of flights beyond the control group
for which the behavior of interest is successfully performed, and the double interac-
tion coefficients indicate this treatment effect after the first seven days of receiving
the feedback report. Controls include weather on departure and arrival, number
of engines on the aircraft, aircraft type, ports of departure and arrival, aircraft
maintenance, captains’ contracted hours, and whether the captain has completed
an annual training. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table A7
Impact on Delays

(1) (2) (3)
Delays Short Delays Long Delays

Expt -0.043*** -0.034*** -0.020*
(0.014) (0.013) (0.103)

Information -0.022 -0.017 -0.007
(0.016) (0.014) (0.013)

Targets 0.001 -0.001 0.004
(0.017) (0.015) (0.014)

Prosocial -0.026* -0.023* -0.007
(0.016) (0.013) (0.013)

Notes: The table presents estimates of delays leaving the departure
gate by experimental condition. Delays are based on regression coeffi-
cients from a difference-in-difference specification with captain fixed ef-
fects comparing pre-experiment delays (January 2013-January 2014) to
delays during the experiment (February 2014-September 2014), control-
ling for a linear trend. The dependent variable is whether a delay oc-
curs at all (column 1), whether a short delay occurs (1-15 minutes; col-
umn 2), or whether a long delay occurs (greater than 15 minutes; column
3). Standard errors are clustered at the captain level. Controls include
weather on departure and arrival, number of engines on the aircraft, air-
craft type, ports of departure and arrival, aircraft maintenance, captains’
contracted hours, and whether the captain has completed an annual train-
ing. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10

Table A8
Job Satisfaction and Treatment

Group

Job Satisfaction
Information 0.212

(0.221)
Targets 0.0242

(0.230)
Prosocial 0.365*

(0.220)
Constant 5.58***

(0.158)
# of Captains 202

Notes: The dependent variable in this regression
is a 7-point scale of job satisfaction, where self-
reported job satisfaction increases in the scale.
Standard errors are reported below estimates in
parentheses. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table A9
Job Satisfaction and Job Performance

Groups: Control and Information Targets and Prosocial

Job Satisfaction Job Satisfaction
Fuel Load Targets Met 0.093 0.065

(0.062) (0.060)
Eff Flight Targets Met -0.074 -0.017

(0.056) (0.054)
Eff Taxi Targets Met 0.025 0.120**

(0.043) (0.054)

Overall Targets Met 0.006 0.058*
(0.028) (0.031)

Constant 5.691*** 5.632*** 5.341*** 5.326***
(0.291) (0.300) (0.358) (0.358)

Observations 103 99
# of Captains 103 99
Controls No No

Notes: The dependent variable in these regressions is a 7-point scale of job satisfaction, where self-reported
job satisfaction increases in the scale. Robust standard errors are reported below estimates in parentheses.
The independent variables indicate the number of targets met per behavior and overall over the course of the
study. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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F Additional Analysis on the Correlations Across Be-
haviors

The objective of this section is to understand whether all captains changed their perfor-
mance across all three behaviors, or whether some captains changed one or two dimensions
while others improved on other dimensions (i.e., the change in the behaviors are not highly
correlated across and within captains). First we observe the raw correlations in all pairwise
combinations of the behaviors for the 13 months prior to the experiment to get an idea of
how the behaviors move together prior to our intervention (Figure A5). We then consider
correlations (again, for each pairwise combination of the behaviors) in the average within-
captain difference in implementation before versus during the experiment to discern changes
in the slopes of the first set of graphs (Figure A6).

For the first approach, we provide scatter plots of the raw data for each captain for all
combinations of the behaviors averaged for the 13 months of pre-experimental data. In Fig-
ure A5a, we see that Fuel Load and Efficient Flight have a correlation coefficient of 0.12 (line
of best fit: FL = 0.361***+0.178**EF ), suggesting that Fuel Load and Efficient Flight are
positively correlated, with a one-unit increase in the former associated with a 0.18 unit in-
crease in the latter. In Figure A5b, we see that Fuel Load and Efficient Taxi have a correlation
coefficient of -0.13 (line of best fit: FL = 0.455***−0.105**ET ), suggesting that these two
behaviors are negatively correlated. In Figure A5c, we see that Efficient Flight and Efficient
Taxi have a correlation coefficient of 0.35 (line of best fit: EF = 0.257***+0.189***ET ),
suggesting that Efficient Flight and Efficient Taxi are positively correlated. These plots
suggest that the behaviors are related to each other before the experiment.

In Figure A6, we average each captain’s implementation before and during the experiment
and subtract the former average from the latter. This exercise provides us with the pre-
versus during-experiment difference for each of the three behaviors for each captain. Figure
A6a shows that the experiment increased the correlation between Fuel Load and Efficient
Flight (r=0.18, line of best fit: FL = 0.012 + 0.169***EF ), suggesting that the experiment
increased the correlation between these two behaviors. Figures A6b and A6c indicate that
the experiment did not increase the correlation in implementation between Efficient Taxi
and either of the other two behaviors. Overall, it appears that on average, (some) captains
were more likely to implement Fuel Load and Efficient Flight, but these captains did not
necessarily also improve on Efficient Taxi, and similarly captains who improved on Efficient
Taxi may not have been more likely to improve on Fuel Load or Efficient Flight.

In Table A10, we break down the correlation coefficient for within-captain differences in
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Figure A5
Pairwise Correlations in Behaviors Before the Experiment

(a) Fuel Load and Efficient Flight

(b) Fuel Load and Efficient Taxi

(c) Efficient Flight and Efficient Taxi
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Figure A6
Pairwise Correlations in Within-Captain Behavior Change

(a) Fuel Load and Efficient Flight

(b) Fuel Load and Efficient Taxi

(c) Efficient Flight and Efficient Taxi
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implementation (pre- versus during) by study group. When examining the correlation coeffi-
cient for the changes in Fuel Load and Efficient Flight, we see consistent coefficients between
0.15 and 0.21. For the other two combinations of the behaviors, the coefficients are less con-
sistent although not drastically different from each other. For instance, for Efficient Flight
and Efficient Taxi, we get correlation coefficients of -0.10, 0.07, -0.02, and -0.03 for control,
information, targets, and prosocial incentives, respectively. For Fuel Load and Efficient Taxi,
we get correlation coefficients of -0.06, 0.17, -0.01, and 0.13, respectively. Overall, there is no
consistent pattern when we separately assess correlations within each experimental group.

Table A10
Change in Correlation Coefficients in Behavior Implementation

Monitoring Information Targets Prosocial
Eff

Flight
Eff
Taxi

Eff
Flight

Eff
Taxi

Eff
Flight

Eff
Taxi

Eff
Flight

Eff
Taxi

Fuel Load 0.18 -0.06 0.15 0.17 0.21 -0.01 0.16 0.13
Eff Flight -0.10 0.07 -0.02 -0.03

Notes: The table shows the correlation coefficients of within-captain differences in behavioral implementation
(pre- versus during experiment) for each pairwise combination of behaviors within each experimental group.
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G Additional Analysis on Heterogeneous Treatment
Response

From Figure A7 we glean several qualitative insights that provide motivation for further nu-
anced research. The figure provides evidence of variance in the response to the interventions,
perhaps suggesting that airlines (and possibly other high-skilled labor organizations) may
benefit from tailoring management practices to individuals depending on their own or their
“type’s” response to various management practices. For instance, for Fuel Load (Figure A7a),
a handful of captains are extremely motivated by targets (whereas one captain is entirely
put off by them). Furthermore, in the targets group, high-achieving captains appear to per-
form worse than they had pre-experiment once they start receiving feedback reports, while
low-achieving captains seem to improve on average. For Fuel Load, the lowest-achieving
captains appear to be unaffected by the treatments with the exception of the prosocial in-
centive treatment group, where the lowest-achieving captains seem to be motivated by the
intervention to implement this particularly sticky behavior.

As for Efficient Flight, Figure A7b indicates that information and targets motivate the
worst performers, while prosocial incentives have no impact on (or even de-motivate) them.
Consistent with our main difference-in-difference findings in Table 4, we see more upward
arrows for captains in the targets and prosocial groups, indicating that it is not just a few
captains driving up our average treatment effects on Efficient Flight implementation.

A vast majority of captains in the treatment groups improve on Efficient Taxi (as opposed
to the control group, which we would expect given that the graphs show individual changes
in behavior net of the monitoring effect; Figure A7c). Interestingly, most improvements come
from captains who generally implement Efficient Taxi on 50% or fewer flights prior to the
experiment (with very few captains reducing their implementation during the experiment in
the information and targets groups), indicating that the management practices deployed in
our treatments may best target lower performers on this behavioral dimension.
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Figure A7
Within-subject Changes in All Groups due to Experiment (Net of Monitoring Effects)

(a) Fuel Load
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(b) Efficient Flight
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(c) Efficient Taxi

Notes: The data points in the graph represent the proportion of flights for which each captain in the experimental
groups implemented the fuel-related behaviors before the experiment (January 2013 - January 2014), in ascending
order of pre-experimental performance. The vertical arrows represent the same proportion during the experimental
period (February 2014 - September 2014), net of the average monitoring effect identified in our main difference-in-
difference specification. An upward (downward) arrow indicates an improvement (decline) in implementation of the
behavior net of the monitoring effect.
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H Price Elasticity of Fuel Demand

To gain an understanding of the magnitude of the estimated fuel savings in a broader industry
context, we estimate the requisite change in price to induce the fuel savings reported in 3.21
of the manuscript using estimates of the price elasticity of jet fuel demand in the aviation
industry. To do this, we need to first provide the overall percentage change in fuel use
resulting from our study, and then use a credible price elasticity of jet fuel demand to estimate
the comparative effect. For the latter, there are few credible estimates in the literature due
to endogeneity concerns, as airlines can react to changing prices by, for example, altering
the number of seats on their aircraft, thereby influencing prices. However, a review of the
literature suggests that jet fuel demand is quite price inelastic, with correlational estimates
ranging between 0.04 and 0.30 (Mazraati and Alyousif, 2009).

According to our estimates, the experiment led to 7,768 tons of fuel savings, which is
equivalent to reducing 0.7% of overall fuel use by Virgin Atlantic during the time period
under investigation. Using the price elasticity ranges above, we can estimate the jet fuel
price increase that would bring about a reduction in market jet fuel use by 0.7%. The
exercise reveals that the experimental fuel savings are equivalent to those that would result
from an increase in jet fuel prices between 2.3% and 17.5%.
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I The Effect of Simulator Trainings on Fuel Use

Airline captains regularly participate in flight simulations both to learn and practice new
flying techniques and to allow the airline to monitor and provide feedback on their perfor-
mance in a simulated environment. Simulator trainings regularly cover the ZFW calculation
(i.e. efficient Fuel Load procedures) and Efficient Taxi procedures.55 Importantly for the
purpose of our analysis, simulator trainings are scheduled every year and at different times
for each captain. As a result, we can treat the date of simulator training as random.

We therefore use a regression discontinuity design (RDD) to examine the performance of
fuel-related behaviors before and after captains receive simulator trainings. We estimate the
impact of the trainings on efficiency using the following fixed effects panel specification:

EfficientBehaviorit = α + PostWindowitβ + Windowitγ +Xitζ + ωi + eit

where the Window indicator is equal to one if the flight is within the relevant time period
on either side of the simulator training for captain i (and equals zero otherwise), and the
PostWindow indicator is equal to one if the flight took place during the relevant time period
after the simulator training for captain i. For robustness, we consider two different window
lengths: seven days and thirty days.

Table A11 presents the results of these regressions for each behavior during the pre-
experimental and experimental time periods. Columns (1) to (3) present the regressions using
seven-day windows and columns (4) to (6) present the regressions using thirty-day windows.
From the coefficients presented, there is no consistent evidence that simulator trainings
improve fuel efficiency. In fact, we find that after seven days, the simulator training has no
impact on any of the fuel efficiency measures, though for the thirty-day window Efficient
Taxi reduces by 3.8 percentage points (p < 0.01); in other words, the simulator training may
actually reduce fuel efficiency on this dimension.

Finally, we explore whether the experiment had a significant impact on the effects of
simulator trainings on fuel efficiency. We interact our main specification with the RDD
interaction terms defined above in a triple differenced specification, and we find that there is
no difference in the effect of simulator training on fuel-efficient behaviors in the experimental
period compared to the pre-experimental period. The triple interaction does not produce
any strong or consistent results, which suggests that neither awareness of the experiment
nor its treatments had any effect on the fuel efficiency impact of simulator trainings.

55Efficient Flight is achieved via a mixture of various in-flight techniques that would be encouraged and analyzed
during training flights rather than in the simulator.
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Table A11
Effects of Simulator Trainings using Regression Discontinuity

(1) (2) (3) (4) (5) (6)
Fuel Load Eff Flight Eff Taxi Fuel Load Eff Flight Eff Taxi

Week Before or After 0.016 0.058*** 0.024 - - -
(0.018) (0.018) (0.023) - - -

Week After 0.003 -0.029 -0.027 - - -
(0.024) (0.022) (0.027) - - -

Month Before or After 0.019* 0.006 0.048***
- - - (0.010) (0.009) (0.013)

Month After -0.014 0.011 -0.038***
- - - (0.012) (0.011) (0.014)

Observations 33,822 33,822 21,681 33,822 33,822 21,681
# of Captains 335 335 335 335 335 335
Controls Yes Yes Yes Yes Yes Yes

Notes: The table shows the results of a regression discontinuity specification with captain fixed effects and clustered standard
errors, controlling for linear trends in the data. ‘Week (Month) Before or After’ is a dummy variable equal to one if the flight
took place within one week (month) of a flight simulation, and equal to zero otherwise. Similarly, ’Week (Month) After’ is a
dummy variable equal to one if the flight took place within the seven- (thirty-)day period following a simulation. The dependent
variables in the regressions are dummies capturing whether the fuel-efficient behavior was performed, and since predicted values
are not constrained between 0 and 1, we do not report a constant. Robust errors are clustered at the captain level. Controls
include weather on departure and arrival, number of engines on the aircraft, aircraft type, ports of departure and arrival, aircraft
maintenance, captains’ contracted hours, and whether the captain has completed training. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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J Alternative Method for Data-Supported Fuel Sav-
ings Estimates

To provide robustness to the data-supported estimates discussed in section 3.3, we provide
an alternative measure of fuel savings derived from the data where savings are attributed
directly to each of the three behaviors targeted in the study. For Fuel Load, we measure the
deviation of the actual fuel load from the “ideal” fuel load—the latter stemming from the
double iteration calculation. We identify the average group-level deviation, which is positive
if the captain over-fuels relative to the ideal. We then estimate average fuel savings per
flight for each treatment group, which entails summing the treatment’s effect on per-flight
fuel savings from Fuel Load with the control group’s per-flight fuel savings from Fuel Load
(the monitoring effect; see Table A12). In doing so, we assume that the monitoring effect
is constant across groups. On average, captains in the control group decreased fuel load
relative to the ideal by 177.7 kg, those in the information group by 148.5 kg per flight, those
in the targets group by 190.5 kg per flight, and those in the prosocial group by 208.8 kg per
flight.

Similarly, for Efficient Flight, we examine changes in captains’ fuel use relative to the
“ideal” fuel use, or the anticipated fuel use according to the flight plan (adjusted for updates
made during Fuel Load). We find that captains in the control, information, targets, and
prosocial groups reduced in-flight fuel use by 256.1, 280.1, 361.1, and 329.9 kg per flight,
respectively. Finally, for Efficient Taxi, we examine changes to fuel use during taxi-in.
Fuel savings per flight amounted to 17.0 kg, 20.8 kg, 21.9 kg, and 11.8 kg for the control,
information, targets, and prosocial incentives groups, respectively.

As a next step, we take these group-level effects and scale them up by the number of
flights per treatment group. Put differently, total savings for a given treatment cell are the
sum of the per-flight fuel savings for each behavior (i.e., the sum of the average treatment
effect and average monitoring effect) multiplied by the number of unique flights during the
experimental period flown by captains in that group. Using the data-supported estimates,
our interventions led to roughly 6.51 million kg in fuel savings in aggregate. Using the same
conversions as in the manuscript, total savings correspond to cost savings of $5.12 million
(equivalent to a reduction of 0.53% of overall fuel costs) and CO2 savings of 20.5 million kg.
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Table A12
Data-Supported Estimates of Average Fuel Savings per

Flight (in kilograms)

(1) (2) (3)
Fuel Load Efficient Flight Efficient Taxi

Control 177.66*** 256.08*** 17.02***
(29.42) (42.24) (5.08)

Information 148.48*** 280.06*** 20.75***
(28.70) (36.07) (4.55)

Targets 190.54*** 361.08*** 21.90***
(28.26) (36.77) (5.36)

Prosocial 208.82*** 329.87*** 11.75**
(29.55) (36.69) (4.61)

Notes: The table presents estimates of average fuel savings by treatment
group. Savings are based on regression coefficients from a difference-in-
difference specification with captain fixed effects comparing pre-experiment
behavior (January 2013-January 2014) to behavior during the experiment
(February 2014-September 2014), controlling for a linear trend. The depen-
dent variable is the deviation from ideal fuel usage in each of the three flight
periods as described in the text. We calculate fuel savings with an intent-
to-treat approach where we sum the regression coefficient of each group (i.e.,
the group’s average treatment effect) and the average monitoring effect (i.e.,
the coefficient of the experimental-period indicator). In other words, we as-
sume that the monitoring effect is constant across groups. Standard error
calculations are based on Newey-West standard errors (lag=1). Controls in-
clude weather on departure and arrival, number of engines on the aircraft,
aircraft type, ports of departure and arrival, aircraft maintenance, captains’
contracted hours, and whether the captain has completed an annual training.
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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K Engineering Estimates of Fuel Savings

We apply engineering estimates to assess fuel savings without requiring data on actual fuel
usage or statistical power to detect differences in fuel use pre- and post-intervention. How-
ever, the engineering estimates do not account for actual changes to fuel usage as a result
of behavior change.56 Since the data-supported estimates incorporate actual changes to fuel
use as a result of the study, we have the unique ability in our study to compare engineering
estimates with various data-driven estimates.

VAA projects an average fuel savings of 250 kg per flight as a result of proper execution
of Fuel Load. The 0.7%, 2.2% and 2.5% treatment effects for the information, targets, and
prosocial incentives groups (respectively) correspond to an increase in the implementation
of Fuel Load by 169 flights (saving 250 kg each flight), equivalent to a savings of 42,250
kg of fuel over an eight-month period. Moreover, VAA estimates that an Efficient Flight
uses (at least) 500 kg less fuel than the alternative, on average. The effect sizes for the
three groups were 1.7%, 3.7%, and 4.7% (respectively), which translates to 323 additional
“efficient” flights over the eight-month period, or 161,500 kg in fuel savings. Finally, VAA
estimates an average fuel wastage of 9 kg per minute if no engines are shut down while
taxiing, and the average treatment effects for the three groups were 7.9%, 9.6%, and 8.8%,
respectively. Given an average taxi-in time of 8 minutes in the dataset and allowing for
a three-minute cooling-off period before engine shutdown, we approximate fuel savings per
flight to be 45 kg. An additional 840 extra flights having met Efficient Taxi corresponds to
a fuel savings of 37,800 kg over the eight-month study period.

Summing these savings, the engineering estimates indicate that the interventions led to
more than 242,000 kg of fuel saved over the course of the study (rounded to the nearest
thousand). Combining the industry’s standard conversion of 3.1497 kg of CO2 per kg of fuel
burned with the February 2014 global jet fuel price of $786 per 1000 kg, we estimate a cost
savings of $190,000 and a CO2 savings of 763,000 kg (i.e., $28,000 environmental savings
using $37/ton of CO2 at 3% discount rate in 2015; Interagency Working Group on Social
Cost of Carbon, 2013). These calculations constitute fuel and cost savings stemming directly
from the treatments and do not incorporate the sizable monitoring effects, which increase
the overall CO2 savings to 3,335,000 kg. The savings associated with the monitoring effects
come from captains having performed Fuel Load on 427 more flights, Efficient Flight on
1,706 more flights, and Efficient Taxi on 491 more flights (a savings of 982,000kg of fuel).

56There is increasing evidence that engineering estimates diverge from estimates coming from observed changes in
behavior derived from clear identification strategies (see Fowlie et al., 2015).
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Interestingly, there are substantial differences between the engineering and data-supported
estimates from our study. The disparity may be attributable to underestimates of average
savings from the three behaviors—especially for the Efficient Flight metric—as well as dif-
ferences in the nature of the estimations. That is, unlike the engineering estimates, the
data-supported estimates do not account for differences in percentages of flights for which a
behavior was met. Rather, they estimate overall average fuel use changes in the study itself
and apply these changes to all flights. Even if we apply the most conservative fuel savings
estimates to the changes in behavior, we find that the study interventions, especially the
provision of targets, led to remarkable cost-savings and return on investment for the airline.
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L Survey Materials

L.1 Job Satisfaction
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